首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在[1]中,作者讨论了L_p[0,2π](1≤p≤∞)中函数用它的富里埃级数典型平均的逼近问题,并讨论了一些局部逼近定理。本文用[1]中一些结果讨论一些三角级数和奇异积分。设f(x)~sum from n=0 to A_n(x),其中A_0(x)=a_0/2,A_n(x)=a_ncosnx+b_nsinnx,B_n(x)=b_ncosnx  相似文献   

2.
设f(x)∈L_p[0,2π](1≤p≤∞),下列事实是已知的:存在一个以2π为周期的连续函数,积分 integral from n=+0 to π(f(x+t)+f(x-t)-2f(x))/t dt (1)处处发散。本文的目的是讨论积分(1)收敛的充要条件。如同我们在[1,2]中讨论的方法一样,我们需要(L~*)求和法。定义设R是一个巴拿赫空间,以‖u‖表示R中元素u的模.设u=∑u_n是R中一个级数,称  相似文献   

3.
本文推广了级数的典型平均和文[2]中提出的L~*、L_1~*求和法,给出一类包括它们在内的较广泛的级数求和法,即所谓L~φ求和法.首先讨论了在Banach空间中用级数的L~φ平均逼近的一般问题,然后用所得的结果讨论周期函数的逼近问题,推广了文[1]、[2]和[6]中的一些结果.  相似文献   

4.
在文献[1],[2]中指出,一类双曲型方程(组)的某些定解问题,最后归结为线性函数方程 f(x)=(?)a/f(α/x)十h(x) (1)的求解问题。其中f(x)是未知函数,h(x)是已知函数。文献[1]—[4]分别讨论了方程(1)的连续解、样条函数逼近解和解析解,得到了很好的结果。1964年G. MAJCHER讨论了更广泛的线性函数方程  相似文献   

5.
王仁宏在[1]中提出了一些问题,其中之一是:对于二次连续可微的函数f(x)而言<以下记为f(x)∈C~2[-1,1]>,S_n(f,x),W_n(f,x),K_n(f,x)应该有什么样的渐近公式?这里S_n(f,x)是Hermite—Fejer插值多项式,W_n(f,x)是第二类拟Hermite—Fejer插值多项式,K_n(f,x)是GrünWald插值多项式.王在[2]中对以第一类Chebyshev多项式T_n(x)的零点为节点的S_n(f,x)对于f(x)∈c~2[-1,1],建立了渐近公式.本文讨论以第二类ChebyShev多项式U_n(x)的零点或者是以Legendre多项式P_n(x)的零点作为  相似文献   

6.
1.假如f(x)∈L[0,2π],且在[0,2π]的子区间[a,b]上是连续的,那末我们写着f(x)∈L[0,2π]·C[a,b], ω_2(f,δ;a,b)= sup |f(x+h)+f(x-h)-2f(x)|.关于这类函数的富里埃级数f(x)~a_0/2+sum form n=1 to ∞(1/n)(a_n COS nx+b_n sin nx),Flett,Sunouchi等作者讨论了蔡查罗局部逼近问题。本文的目的是在详尽地讨论这个局部逼近问题,指出局部性与整体性的差别,并且解决了局部饱和问题。我们建立两个定理。定理1.设f(x)∈L[0,2π],ω_2(f, δ;a,b)=O(δ~β),f(x)的富里埃系数a_n,b_n=O(n~(a-β)).则(i)当0<β<1时,在[α+2ε,b-2ε]中均匀地成立着σ_n~α(f;x)-f(x)=O(n~(-β));(ii)当β=1时,f′(x)在[a,b]中是有界的话,在[a+2ε,b-2ε」中均匀地成立着  相似文献   

7.
本文讨论了形如∞/∑/x=2f(x)ξ(x)的级数的求和问题,给出了更简洁形式的求和公式。  相似文献   

8.
本文继续文[1]的工作,将研究对象推广到(不变)集合中去,讨论不变集的区域稳定性. 考虑n维欧几里得空间中的区域D及微分方程组 =f(t,x) (1)这里D可以是部分无界、部分有界而其边界也可以是部分开、部分闭的复杂区域,x、f为n维向量,f(t,x)在域G={(x,t):t≥0,x∈D}中定义且满足方程(1)解的存在唯一性条件.  相似文献   

9.
本文讨论了以盖根堡多项武C_n~(λ)(x)的零点{x_k~(λ)}_k~n=1为基点的拟Hermite—Fejer插值多项式E_n~(λ)(f,x)的收敛性问题,证明当0≤λ≤1/2时,E_n~(λ)(f,x)在闭区间[-1,1]上一致收敛于连续函数f(x),部分地解决了P.Turan提出的一个问题。  相似文献   

10.
讨论了非线性特征值问题 u△△(t) λa(t)f(u(δ(t) ) ) =0 ,t∈ [0 ,1]u(0 ) =0 =u(δ(1) ) 正解的存在性 .这里 [0 ,1]是一可测链 ,a与f取正值 ,且limx→ 0 f(x)x 与limx→∞f(x)x 不一定存在  相似文献   

11.
讨论了Banach-值函数f(x)在[a,b]上的Henstock-Pettis可积性问题.利用Pettis积分和Henstock积分的性质给出了f(x)可积的一个充分必要条件.  相似文献   

12.
一、引理引理1 若函数f(x)在闭区间[a,b]连续,则f(x)在[a,b]上一致连续.引理2 若函数f(x)在[a,b]及[b,c]都一致连续,则f(x)在[a,c]上一致连续.注改[b,c]为[b, ∞)时,结论也成立.引理3 设函数f(x)在开区间(a,b)连续,则f(x)在(a,b)一致连续的充分必要条件是f(a 0)、f(b-0)都存在且为有限值.证明见[1]之正文及相应习题.二、主要结论定理1 若函数f(x)在区间I(I可开、半开、有限或无限,下同)可导,且f’(x)在I有界,则函数f(x)在I一致连续.  相似文献   

13.
设f(x)=■a_ix,a_i∈R是一个给定的K(≥0)次多项式,本文着重讨论f(0) f(1) … f(n-1)的求和问题,记S_1(n)=f(0) f(1) …… f(n-l),从而导出比较广泛的求和公式。  相似文献   

14.
设f(x,y)是对每个变量都是以2π为周期的实函数,首先给出了二元Λ有界变差函数的概念.在区域T2=[-π,π]×[-π,π]上讨论二元Λ有界变差函数f(x,y)的Fourier级数的系数∧f(m,n)阶的估计.若f(x,y)∈ABV(T2)在(0,2π]×[0,2π]区域上连续,给出并证明了f(x,y)的Fourier级数绝对收敛的充要条件.  相似文献   

15.
问题 f(x)在区间[a,b]上连续,在(a,b)内可导,对任意给定的三点a≤x0相似文献   

16.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

17.
在课改进程中,数学高考在加强“双基”考察的同时,凸显了考察学生创造性学习能力的命题导向,2005年北京卷压轴题(理、20)就是典型一例。原题:设f(x)是定义在[0,1]上的函数,若存在x*∈(0,1),使得f(x)在[0,x*]上单调递增,在[x*,1]上单调递减,则称f(x)为[0,1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间。对任意的[0,1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法。(Ⅰ)证明:对任意的x1,x2∈(0,1),x1相似文献   

18.
讨论了DurrmeyerBernstein算子Dn(f,x)在Lp空间的饱和问题.在处理线性算子逼近的饱和问题时,通常采用“抛物线技巧、Fourier技巧和积分方程技巧”,本文引入双线性泛函:An(f,φ)=(n 1)∫10(Dn(f,x)-f(x))φ(x)dx,利用积分方程技巧得出该算子在Lp[0,1]关于阶{1/n}和平凡类T={f|f=const(a.e)}是Lp饱和的.  相似文献   

19.
傅里叶级数展开的几个问题   总被引:1,自引:0,他引:1  
讨论了傅里叶级数展开的三个问题:1.f(x)是以2π为周期的函数与f(x)只定义在[-π,π]上的傅里叶级数展开有何区别?2.只给出f(x)在一个周期或半个周期内的定义,那么函数在区间端点处的取值有什么要求;3.若f(x)是以2l为周期的函数,则f(x)也是以2kl为周期的函数,这时,f(x)的傅里叶级数展开式是否与周期无关.澄清了某些现行教材中的模糊问题.  相似文献   

20.
对于БЕРНшТЕИН[1]提出的逼近连续周期函数的求和算子Un(f;x)=1/(2n+1) sum from k=0 to 2n f(x_k)〔sin2/2(x-x_k)/sin(x-x_k)/2 〕~2,HATAHCOH[2]证明了它的收敛性.至于误差估计,本文得到:1)若f∈C2π,则|Un(f;x)-f(x)|≤(5+3/2π)ω(f,lnn/n)(n≥3),2)若f∈C2π且f∈Lipiα(0<π<1),则|Un(f;x)-f(x)|≤〔7/4+3/(1-α)〕(2π/2n+1)~α,3)若f∈C2π且f∈Lipil,|Un(f;x)-f(x)|≤15·ln(2n+1)/2n+1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号