首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以玉米芯废渣为原料、KOH为活化剂,采用化学活化法制备多孔碳材料用于液体危化品苯的吸附.通过热重分析仪、X射线衍射仪(XRD)、扫描电子显微镜(SEM)分析多孔碳的微观结构和表观形貌.研究表明:在碳化温度350,℃、碳化保温时间30,min、m(KOH)∶m(C)=4∶1、活化保温时间120,min的条件下,最佳活化温度为900,℃,KOH的造孔效果最好,制备的多孔碳产品以微孔为主,比表面积达到2,387,m2/g,对苯的饱和吸附量最大为14,235,mg/g.  相似文献   

2.
通过改变间苯二酚、甲醛和碳酸钠的配比,实现对碳气凝胶材料孔结构的控制.通过改变CO_2活化的温度,研究活化温度对碳气凝胶孔结构和电化学性能的影响.利用氮气吸脱附实验(BET)和扫描电子显微镜(SEM)对材料的孔结构和表面形貌进行表征分析,运用循环伏安法(CV)、恒流充放电等技术对材料的电化学性能进行测定.结果表明:提高CO_2活化温度有利于改善材料的结构和性能,当CO_2活化的最高温度为1 000℃时,碳气凝胶具有最高比表面积(2 201m~2/g);在6mol/L的KOH溶液中,当电流密度为1A/g时,相应的比电容可达190F/g.  相似文献   

3.
开发了一种简单、经济、环保、利用生物质快速生产具有优良电化学性能的碳材料的方法。利用梧桐树叶作为生物质原料制备多孔碳材料,对其结构、形貌和电化学性能进行分析和测试。结果表明:以梧桐叶为原料,碱碳比为3,活化温度为800℃,活化时间为2 h时,制备的多孔碳材料具有大的BET比表面积,其值为2 178 m2/g,孔径分布为2.5 nm,比电容达到304 F/g。当电流密度由0.25 A/g增加至20 A/g时,样品的容量保持率为82.6%。以树叶为原料制备的多孔碳材料展示出高电容和优异的倍率特性,有望在超级电容器等领域得到重要应用。  相似文献   

4.
以活性炭硅藻土基多孔陶瓷复合材料为研究对象,分别探讨了KOH、ZnCl2和H3PO4三种活化剂的作用效果.根据样品的碘吸附值、含炭量及比表面积确定最佳的活化条件,并采用扫描电镜观察样品的微观形貌.结果表明,三种活化剂中,ZnCl2的活化效果较好,其最佳添加浓度为20%(质量百分比)、活化温度为800℃、活化时间为90 min,制得的活性炭多孔陶瓷复合材料碘吸附值为212.9 mg.g-1,比表面积为136.2 m2.g-1,炭在活化过程中的得率为47.2%.  相似文献   

5.
果蔬企业在生产过程中会产生大量的果皮,这些废弃物目前还没有得到有效利用。本文以废弃猕猴桃果皮为原料,以氢氧化钾为活化剂,制备了杂原子掺杂多孔碳。通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)、拉曼光谱(Raman)和氮气吸附-脱附(BET)等手段对制备的材料进行了表征,结果表明:采用果皮预碳化、活化的方法可以得到N、O、S杂原子原位共掺杂多孔碳;经过氢氧化钾活化后,碳材料的比表面积大幅增加,比表面积最高可达1698. 6 m~2/g。在三电极体系下对制备的碳材料超级电容器性能的评价结果表明:在氢氧化钾与猕猴桃果皮质量比1∶3时,电极材料具有最佳的超电性能;在扫描速率为5 m V/s时,材料的比电容为221. 1 F/g,同时具有良好的倍率性能和循环稳定性,经过4000次的长循环后,容量保持率为83. 2%。  相似文献   

6.
海藻纤维废渣为海藻琼脂提取工艺的副产物,富含碳、氧等元素,以其为原料制备高性能生物质衍生多孔碳可实现海藻纤维废渣的高值化利用.本研究以海藻纤维废渣制备多孔碳,通过吸附等温线和动力学探究吸附行为;并利用XGBoost(eXtreme Gradient Boosting)算法构建氨氮吸附容量的预测模型,分析多孔碳制备过程的升温速率、碳化温度及碳化时间等因素对氨氮吸附能力的影响.实验结果表明:海藻纤维基多孔碳材料对氨氮有较好的吸附效果,最大吸附容量可以达到3.514 mg/g,其动力学过程符合拟二级吸附动力学模型、颗粒内扩散模型和Langmuir吸附等温模型;实验和模型证明多孔碳制备过程中碳化温度对氨氮吸附的影响最大,升温速率和碳化时间次之;通过数据模型得出以5℃/min速率升温至1 000℃碳化120 min制备的多孔碳具有最优的氨氮吸附性能.本研究提出一种数据模型,并结合实验成功证明该模型预测的准确性,可为今后生物质衍生多孔碳的制备方法提供预测依据.  相似文献   

7.
以花瓣球形的聚苯胺(PANI)为前驱体,经炭化和KOH活化制备出球形结构的多孔炭.采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、低温N2吸脱附、X射线衍射(XRD)以及X射线光电子能谱(XPS)等分析手段对多孔炭的形貌、结构和元素组成进行表征,并探讨了炭化温度对多孔炭电化学性能的影响.结果表明:炭化和活化温度分别为750℃和850℃时,获得的多孔炭为直径约2μm的球形粒子,其比表面积高达2 496.6m2/g,并具有合适的多级孔结构分布.当电流密度为0.5A/g时,合成的多孔炭比电容值高达247F/g;当电流密度增大到20A/g时,比电容量仍有182F/g,表现出优良的倍率性能;在电流密度为10A/g的条件下,经1 000次恒电流充放电循环后,其比电容量保持率为102%.  相似文献   

8.
应用模板法从煤沥青制备中孔活性炭   总被引:1,自引:0,他引:1  
以煤沥青为原料,应用纳米二氧化硅模板法制备中孔活性炭,并考察焦模比、碱碳比以及活化温度对活性炭孔结构和收率的影响.结果表明,所得活性炭试样孔径分布最大值与模板剂孔径尺寸相吻合.在焦模比为2∶1、碱碳比为4.5∶1、活化温度为850 ℃时,所制活性炭总比表面积为1 729 m2/g,其中中孔比表面积为1 702 m2/g,占总比表面积的98.43%.  相似文献   

9.
循环煅烧/碳酸化反应中CaO微观结构变迁特性   总被引:1,自引:0,他引:1  
对CaO在循环反应中的碳酸化特性和微观结构变迁特性进行了研究.研究表明,CaO在700 ℃碳酸化时能取得最佳的CO2捕捉性能,高煅烧温度不利于CaO的碳酸化.随着循环次数的增加,CaO的孔隙由粗糙、具有网状连接和多孔的结构逐渐向平滑、孔间连接较差和较少孔的结构转变.CaO比表面积和比孔容均随循环次数增加而减小.前10次循环反应使CaO比表面积衰减迅速,此后变化缓慢.随着循环次数的增加,CaO的孔容和孔表面积分布均变差,CaO平均孔径逐渐增大.每次循环中,CaO中孔(2~50 nm)的孔表面积大于大孔(大于50 nm)的孔表面积.CaO碳酸化转化率随其比表面积和比孔容增加而增大,但当超过比表面积和比孔容的临界值后其转化率则可能减小.  相似文献   

10.
以衰老树叶为碳源,采用先预碳化后活化的方法合成生物质多孔碳,采用XRD、SEM、TEM、N2吸附-脱附,FT-IR等测试手段对其结构表征.结果显示,当碳碱比为3,400℃预碳化3h,600℃高温活化1h后样品以无定型碳形式存在,透光性好,呈现多孔结构,比表面积为1065m2·g-1,孔容为0.91 cm3·g-1,且孔...  相似文献   

11.
用废弃的菌棒作为原料,利用高温管式炉对其进行热解及活化,探究废弃菌棒在不同热解温度下的热解性能及不同活化条件下的活化性能,并对最优条件下获得的活性炭进行表征,结果表明:热解终温的升高有利于制备富氢燃气,热解终温为900℃时气体产量最大(489 L/kg),其中H2占55.55%,CO占31.93%,CH4占8.52%;选择热解终温为600℃比较有利于液相的生成,此时液相产率为29.50%;选择400℃的热解终温有利于生成热值较高且产率较高的固体燃料,此时炭产率为48.23%,热值20.66 MJ/kg。此外,以热解终温600℃、升温速率20℃/min、热解反应时间1 h条件下制得的生物质炭为原料,在不同条件下进行活化,发现当碱碳比为1、活化时间为1 h、活化温度为800℃时制备的活性炭具有最佳的吸附性能,此时活性炭产率为31.20%,比表面积为1 659.812 m2/g,亚甲基蓝脱色能力为615.32 mg/g,碘吸附值达到1 563.90 mg/g。  相似文献   

12.
通过正交实验和单因素实验探讨了以椰壳渣为原料、KOH为活化剂制备高比表面积活性炭的最佳工艺条件.考查了炭化温度、活化温度、活化时间、活化剂料比等因素对实验结果的影响.在炭化温度为600℃、碱炭质量比为2∶1、活化温度为900℃、活化时间为90 m in条件下,制备出以微孔为主、比表面积达2 180 m2.g-1、总孔容为1.19 mL.g-1的高比表面积活性炭.  相似文献   

13.
锂硫电池理论比容量高、成本低、环境友好,但硫正极仍面临导电性差、容量衰减快、体积膨胀等问题。采用生物质废弃物玉米芯作为碳源,KOH为活化剂,通过不同工艺制备了三种多孔碳材料。利用XRD、SEM、BET等对多孔碳产品的物相形貌等进行表征后发现,采用一次活化工艺所制备的多孔碳材料具有大量相互贯通的孔道结构,故具有高的比表面积(1 578.64 m~2/g)与较大的孔容(0.93 cm~3/g)。覆硫后用于锂硫电池正极,可作为三维导电骨架显著提高硫正极的导电率,并对单质硫表现出较高的吸附性能。电化学测试表明改性正极材料首次放电比容量为1 050.7 mAh/g,50周循环后容量保持率为50.4%。综合对比表明,一次活化工艺为利用此类生物质废弃物制备多孔碳材料提供了优化方案。  相似文献   

14.
以石油焦和含油污泥为原料,在活化剂的作用下共同热解制备多孔活性炭材料。将得到的多孔碳进行碘吸附值、苯吸附值、BET等测定,确定多孔碳的比表面积及孔结构。研究硝酸预处理石油焦对多孔碳性能的影响以及微波功率和微波辐照时间对多孔碳的影响。结果表明:经硝酸氧化处理所得的活性炭吸附性能明显提高;微波功率越高对物料的活化作用越好,经微波活化的活性炭吸附性能越好;在微波功率800 W条件下,比表面积最大为1 396.91m2/g;微波加热时间约30 min可获得明显的催化效果。  相似文献   

15.
沥青氧化纤维制备活性炭纤维过程中孔隙结构的变化   总被引:3,自引:0,他引:3  
以通用级沥青氧化纤维为原料经水蒸气活化制得沥青基活性炭纤维(PACF), 讨论了工艺参数对PACF的比表面积、孔结构(孔容、孔径大小及分布)的影响. 结果表明, PACF的比表面积随着活化温度的提高(850~950 ℃)而增加, 同时, 孔径变大, 孔径分布变宽;在相同最终活化温度下(900 ℃), PACF的孔径及其分布随着水蒸气通入温度的不同而发生变化.  相似文献   

16.
以廉价的废弃棉(Cotton)为载体负载一种金属有机框架(MOFs)材料ZIF-67,通过高温煅烧制备出钴/棉碳(Cotton/ZIF-67-700)复合材料.采用X-射线衍射、扫描电子显微镜、透射电子显微镜和X-射线光电子能谱等手段对材料进行表征.将Cotton/ZIF-67-700材料应用于催化活化过一硫酸盐(PMS)降解水中的双酚A(BPA),评价其性能及各种影响因素.通过淬灭实验和电子顺磁共振(EPR)波谱识别催化反应体系中产生的活性氧(ROS)物种并推测反应机理.结果表明:Cotton/ZIF-67-700对BPA具有优异的吸附性能,理论最大吸附量达到227.1 mg/g; Cotton/ZIF-67-700可在宽的pH范围(3~11)高效活化PMS降解BPA,且能循环使用多次;淬灭实验和EPR波谱分析证实,硫酸根自由基(SO4·-)、羟基自由基(·OH)和单线态氧(1O2)为主要ROS参与BPA的氧化降解.本研究提供了一种廉价和规模化制备MOFs衍生金属/碳复合材料的通用策略,展示出该复...  相似文献   

17.
通过热解废弃酚醛树脂成功制备了一种新型复合碳材料,设置催化剂Co(NO3)2质量分数分别为0.75%、1.0%和1.5%,热解温度分别为700℃、900℃和1100℃.采用场发射扫描电子显微镜、X射线能量色散谱和X-射线光电子能谱仪等手段确定材料的形貌特征与生成机理,通过X射线衍射仪和拉曼光谱研究催化剂质量分数和热解温度对碳纳米管生成的影响,采用比表面积(Brunauer-Emmett-Teller,BET)测试方法和BJH模型分别计算材料比表面积和平均孔径.通过磁性测试和Zeta电位表征材料磁性能否磁性分离以及不同pH值环境下材料稳定性.将不同掺入量的复合材料和商用碳纳米管对双酚A的吸附去除效能进行对比,用Langmuir和Freundlich模型进行吸附数据拟合.结果表明,复合碳材料表面均匀生成大量碳纳米管,CoO金属氧化物附着于碳管内和端点处;材料的比表面积高达290.74 m2/g、平均孔径仅为3.63 nm.通过对双酚A的吸附性能研究,发现在6 h内可达到吸附平衡,吸附过程更符合Freundlich模型,表明材料表面存在不同类型的活性吸附点位,吸附发生在复杂的异相界面,双酚A的最大吸附容量为53.19 mg/g.  相似文献   

18.
介绍一个大学化学开放实验,该实验的主要内容包括:利用同步物理-化学活化法制备多孔碳材料,通过低温自动N2吸附法测定多孔碳材料的比表面积和孔隙结构,探究活化条件对碳材料表面结构的影响,将现代分析仪器引入到本科教学中。要求学生自主设计活化实验方案,了解自动气体吸附仪的原理和使用方法,并利用Excel、 Origin软件进行实验数据处理、分析,培养学生的科学素养。  相似文献   

19.
以甲基纤维素为原料,改变水热碳化温度得到不同水热产物,随后对其进行化学活化得到多孔碳样品。研究水热温度对多孔碳样品形貌和孔结构的影响,测试了样品在不同压力下的CO2吸附性能。结果表明,水热温度对纤维素基多孔碳的孔结构影响较大。随着水热温度的升高,其比表面积、孔容、微孔比表面积、微孔孔容均呈现出先增大后减小的趋势,平均孔径则先减小后增大。CO2吸附量也先增加后减小。样品ACe-270在纤维素基多孔碳中吸附性能最优,在温度为25 ℃、压力分别为0.1、0.2、0.3、0.4 MPa的条件下,其CO2吸附量分别为0.65、1.92、3.76、5.23 mmol·g-1。  相似文献   

20.
以稻草秸秆为原料,在N_2气氛下,采用预碳化-碱活化的方法制备了活性炭材料,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、N_2吸附-脱附等手段进行表征.结果表明,当活化温度为700℃时,制备的活性炭比表面积为2 743 m~2/g.将其用于超级电容器的电极材料显示了较好的性能,当电流密度为5 A/g时,比电容可达到380 F/g,循环充放电1 000次后,比电容值约为首次比电容的85%,具有较好的循环稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号