首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为明确孔型密封设计中关键几何参数孔深、孔径的选取准则,提出了基于动网格技术和节点位移扩散方程、孔型密封孔深连续变化时三维计算网格的生成方法以及基于三维定常Reynolds-Averaged Navier-Stokes(RANS)方程的孔型密封泄漏量和鼓风加热功率的数值计算方法。研究了孔型几何参数孔深、孔径对孔型密封泄漏特性、鼓风加热特性的影响规律,计算分析了7种孔径D=2,3.175,5,7,9,11,14mm、孔深H在0.5~15mm范围连续变化时孔型密封的泄漏量、鼓风加热功率和孔腔流场结构,并与实验结果进行了对比。结果表明:本文提出的网格生成和数值计算方法能够可靠预测孔型密封的泄漏特性,且具有计算速度快、工作量小的优点;孔型密封泄漏量在深径比AR在0.15~0.25范围内取得最小值,在0.7~0.9范围内取得最大值;鼓风加热功率随孔径的增大而增大,随孔深的增大而减小;孔型密封设计中在孔径为2~5mm范围内选取较小的孔径,在深径比为0.2~0.5范围内选取较大的孔深。  相似文献   

2.
高偏心率下旋转密封泄漏特性和静态动力特性研究   总被引:1,自引:0,他引:1  
为了评估转子发生偏心时非同心旋转密封对透平机械运行效率和安全稳定性的影响,提出了基于动网格技术和三维RANS方程的高偏心率旋转密封三维计算网格的生成方法,以及高偏心率旋转密封静态气流激振力和静态刚度系数的数值计算方法,研究了高偏心率下旋转密封的泄漏特性和静态动力特性。采用文中所提方法计算分析了3种压比(0.17,0.35,0.50)、2种进口预旋比(0,0.5)和7种偏心率(0.0,0.1,0.3,0.5,0.7,0.8,0.9)下的袋型阻尼密封泄漏量、静态气流激振力、静态刚度系数和流场特性。研究结果表明:旋转密封的泄漏量随偏心率的增大而增大;转子偏心和进口预旋产生了显著的正交叉刚度,易诱发转子发生偏心涡动而失稳;非阻塞工况下,旋转密封具有正的静态直接刚度;阻塞工况下,旋转密封的静态直接刚度存在穿越偏心率为0.5,静态直接刚度随偏心率的增大而增大,其值在穿越偏心率处由负值变为正值,以避免产生密封碰磨失效。  相似文献   

3.
为准确预测刷式密封的泄漏流动以及阻力特性,提出了将多块结构化网格以及动网格技术应用于刷式密封的三维叉排管束模型。多块结构化网格的使用保证了刷丝束流体域与腔室间无需设置交界面,消除了因交界面的存在引起的插值误差。动网格技术能够实现刷丝束的整体轴向压紧。数值模拟得到的刷式密封泄漏量与实验数据吻合良好,验证了数值方法的可靠性。研究了进出口总静压比(1.5,2.5,3.5)、密封间隙(0,0.1,0.2mm)以及轴向截距减小量(0~0.005mm)对刷式密封泄漏流动和阻力特性的影响规律,结果表明:轴向截距减小量的增大对于接触式刷式密封的泄漏量相对变化率具有支配作用;随着密封间隙的增大,轴向截距减小量的增大对间隙刷式密封的泄漏量相对变化率的影响逐渐减弱;具有间隙的刷式密封的流动阻力参数欧拉数远小于接触式刷式密封;密封间隙使得刷式密封泄漏流的压力能有效地转换为动能,增大了刷式密封的泄漏量。文中发展的三维叉排管束计算模型可为刷式密封封严机理和多场耦合分析提供技术手段。  相似文献   

4.
两级刷式密封泄漏特性的实验与数值研究   总被引:2,自引:0,他引:2  
基于刷式密封的泄漏量实验测试平台和Non-Dareian多孔介质方法的泄漏流动数值模型,详细研究了密封间隙、压比和转速对两级刷式密封泄漏流动特性的影响规律,分析了两级刷式密封的泄漏流动形态以及刷丝束表面的压力分布规律.结果表明:在相同的间隙和转速下,两级刷式密封的泄漏量随着压比的增加而增大;在相同的转速和压比下,两级刷式密封的泄漏量随着间隙的增加而增大;在相同的压比和间隙下,两级刷式密封的泄漏量随着转速的增加而减小.转子高速旋转时产生的离心伸长效应使密封间隙减小,因此数值计算时考虑转子的离心伸长效应对密封间隙的影响可以更加准确地预测两级刷式密封的泄漏量.  相似文献   

5.
迷宫密封泄漏特性影响因素的研究   总被引:4,自引:1,他引:3  
采用标准k-ε紊流模型和三维RANS方程求解方法,数值研究了密封间隙、压比、转速对典型迷宫密封泄漏特性的影响规律.计算分析了典型迷宫密封在3种密封间隙、4种压比和4种转速下的泄漏特性.研究结果表明:用相对流量系数(转动时的流量系数与静止时的流量系数的比值)与速比(周向速度与轴向通流速度的比值)的函数关系表征泄漏量随转速变化的规律时,存在一个临界速比约等于1.0;低于这个临界速比时,转速对泄漏量的影响不明显;高于这个临界速比时,泄漏量随转速的增大而减小,在很高的转速下(6 000 r/min以上),泄漏量至少减小了5.1%;相同间隙下,泄漏系数随着压比的提高而近似线性增加;相同转速下,随着密封间隙的减小,相对泄漏量逐渐降低.  相似文献   

6.
为精确分析口环间隙泄漏特性及泄漏流动对液氧泵内流场的影响,本文基于SST k-ω湍流模型与High Resolution算法,对某涡轮氧泵进行了全尺寸整场数值模拟,研究了不同流量工况下热力学效应对液氧泵外特性、口环间隙泄漏量及空化特性的影响。研究结果表明,在额定工况点附近,Б.B.奥夫相尼科夫公式预测口环间隙泄漏特性相对准确,偏流量工况下各经验公式预测精度下降;等体积流量下,工质为液氧时泵效率较常温水介质高4%,口环间隙泄漏量大于水介质下,且泄漏量差值与流量相关;等温条件下,介质温度对口环间隙泄漏量影响较小,额定工况下高温液氧泄漏损失较大;考虑热力学效应后,泵腔口环间隙内的温升随流量减小而增大,120%~40%工况下温升约为1~3 K。液氧泵扬程与效率较等温条件结果略有升高,口环间隙进出口涡量增大、泄漏量明显减小,泄漏量减小数值与流量成反比,最大减小量为3%,同时口环间隙内空化加剧。  相似文献   

7.
迷宫密封泄漏特性的试验研究   总被引:2,自引:0,他引:2  
为了研究迷宫密封泄漏特性,设计并搭建了旋转密封试验台,测量了典型迷宫密封在8种压比、5种转速、固定密封间隙下的泄漏量和密封腔室压力.通过数值模拟结果的对比分析,找出了压比、转速对迷宫密封泄漏特性和腔室压力的影响规律.研究结果表明:搭建的旋转密封试验台在迷宫密封泄漏量和密封腔室压力的测量精度上是可靠的;相比于试验结果,数值计算获得的泄漏量和腔室压力的最大相对误差分别为3.25%、3.6%,表明试验与数值结果吻合良好,数值方法可以较准确地预测迷宫密封的泄漏量和腔室压力;相同转速下的流量系数随着压比的提高而增大,小压比下的流量系数增加迅速;相同压比下的转速对流量系数的影响很小,可以忽略;迷宫密封腔室压力系数沿流动方向逐渐减小,密封腔室结构对压力系数影响很大.  相似文献   

8.
为评估孔型密封在液体透平机械动静间隙的封严效果,明确液体工质下孔型密封设计中关键几何参数孔深、孔径选取准则,采用基于动网格技术的网格自动生成方法和基于三维定常雷诺时均Navier-Stokes(RANS)方程的孔型密封泄漏流动数值计算方法,研究了液体工质下孔型几何参数孔深、孔径对孔型密封泄漏特性和转子耗功的影响规律。计算分析了2种转速(2 000,6 000r/min)、5种孔径(3,6,9,12,16mm)下孔深在0.5~15mm范围连续变化时,液体孔型密封的泄漏量、转子耗功以及孔腔流场结构,并与实验结果进行了对比。结果表明:所采用的数值方法能够准确预测液体孔型密封泄漏量;液体孔型密封泄漏量随转速增大而线性减小;深径比(孔深与孔径之比)对孔腔内涡系结构具有显著影响,是影响液体孔型密封泄漏量的关键参数;随孔深径比增加,液体孔型密封泄漏量先减小后增大;存在最佳孔深径比范围0.5~0.6,此时液体孔型密封泄漏量最小;不同孔径下,液体孔型密封转子耗功随孔深径比的增加而急剧减小。  相似文献   

9.
为了分析圆盘密封螺旋泵泄漏通道的几何特性,基于螺旋泵的啮合特性及各运动部件之间的装配几何关系建立了各个泄漏通道的理论计算几何模型,得到了各个泄漏通道长度及面积的数学表达式。分析了密封圆盘半径和偏心距等因素对各个泄漏通道面积的影响,结果表明:在回流增压区域(-5°~5°)内,回流增压泄漏通道的面积远远大于其他泄漏通道;密封线间隙泄漏通道的面积随着密封圆盘半径的增大而增大,在啮合增压区,密封线间隙泄漏通道的面积会随着偏心距的增加而增大,在回程区,密封线间隙泄漏通道的面积会随着偏心距的增大而减小;偏心距越大,密封盘间隙泄漏通道的面积越小,且随螺杆的转动,面积变化趋势越陡峭,偏心距的变化不会改变密封盘间隙泄漏通道面积的最大值,最大值都是出现在螺杆转角?=0°,180°,360°的位置处。通过对圆盘密封螺旋泵泄漏通道的几何特性分析,可为泄漏特性的研究提供理论基础。  相似文献   

10.
GLB120-27型采油螺杆泵的静力学特性分析   总被引:2,自引:1,他引:1  
针对单螺杆泵转子与定子橡胶间的磨损,根据其工作原理和结构特点,用SolidWorks 2007建立了油田广泛应用的GLB120-27单螺杆泵的实体模型.利用有限元分析软件ANSYS11.0,选用四面体单元SOLID45和六面体单元SOLID185,并采用映射网格与自由网格相结合的网格划分方法,再模拟螺杆泵工作参数,即压力、扭矩、过盈量以及温度等环境因素,建立多种工况的有限元模型.运用ANSYS进行力学分析,得出剪应力、接触压力等力学参量的分布规律,为分析螺杆泵的磨损机理奠定基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号