首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wuite GJ  Smith SB  Young M  Keller D  Bustamante C 《Nature》2000,404(6773):103-106
T7 DNA polymerase catalyses DNA replication in vitro at rates of more than 100 bases per second and has a 3'-->5' exonuclease (nucleotide removing) activity at a separate active site. This enzyme possesses a 'right hand' shape which is common to most polymerases with fingers, palm and thumb domains. The rate-limiting step for replication is thought to involve a conformational change between an 'open fingers' state in which the active site samples nucleotides, and a 'closed' state in which nucleotide incorporation occurs. DNA polymerase must function as a molecular motor converting chemical energy into mechanical force as it moves over the template. Here we show, using a single-molecule assay based on the differential elasticity of single-stranded and double-stranded DNA, that mechanical force is generated during the rate-limiting step and that the motor can work against a maximum template tension of approximately 34 pN. Estimates of the mechanical and entropic work done by the enzyme show that T7 DNA polymerase organizes two template bases in the polymerization site during each catalytic cycle. We also find a force-induced 100-fold increase in exonucleolysis above 40 pN.  相似文献   

2.
3.
Mallik R  Carter BC  Lex SA  King SJ  Gross SP 《Nature》2004,427(6975):649-652
Cytoskeletal molecular motors belonging to the kinesin and dynein families transport cargos (for example, messenger RNA, endosomes, virus) on polymerized linear structures called microtubules in the cell. These 'nanomachines' use energy obtained from ATP hydrolysis to generate force, and move in a step-like manner on microtubules. Dynein has a complex and fundamentally different structure from other motor families. Thus, understanding dynein's force generation can yield new insight into the architecture and function of nanomachines. Here, we use an optical trap to quantify motion of polystyrene beads driven along microtubules by single cytoplasmic dynein motors. Under no load, dynein moves predominantly with a mixture of 24-nm and 32-nm steps. When moving against load applied by an optical trap, dynein can decrease step size to 8 nm and produce force up to 1.1 pN. This correlation between step size and force production is consistent with a molecular gear mechanism. The ability to take smaller but more powerful strokes under load--that is, to shift gears--depends on the availability of ATP. We propose a model whereby the gear is downshifted through load-induced binding of ATP at secondary sites in the dynein head.  相似文献   

4.
Structure of the bacteriophage phi29 DNA packaging motor   总被引:19,自引:0,他引:19  
Motors generating mechanical force, powered by the hydrolysis of ATP, translocate double-stranded DNA into preformed capsids (proheads) of bacterial viruses and certain animal viruses. Here we describe the motor that packages the double-stranded DNA of the Bacillus subtilis bacteriophage phi29 into a precursor capsid. We determined the structure of the head-tail connector--the central component of the phi29 DNA packaging motor--to 3.2 A resolution by means of X-ray crystallography. We then fitted the connector into the electron densities of the prohead and of the partially packaged prohead as determined using cryo-electron microscopy and image reconstruction analysis. Our results suggest that the prohead plus dodecameric connector, prohead RNA, viral ATPase and DNA comprise a rotary motor with the head-prohead RNA-ATPase complex acting as a stator, the DNA acting as a spindle, and the connector as a ball-race. The helical nature of the DNA converts the rotary action of the connector into translation of the DNA.  相似文献   

5.
6.
The DNA gyrase of Escherichia coli plays an essential role in the life of this microorganism.It is unique among all topoisomerases because of its ability to introduce negative supercoils into DNA.This study investigated the single molecular interaction of E.coli gyrase with DNA using magnetic tweezers.The results showed that,in the absence of ATP,gyrase weakly binds the G and T segments.The stretched force of 0.7 pN can gradually destroy the binding,whereas that of 5.9 pN directly destroys it.Addition of high concentrations of norfloxacin enhances gyrase binding to both segments,making them adapt to 5.9 pN.DNA gyrase reduces the plectonemic dimension,which was determined by the bacterial enzyme and not by the pull force.Moreover,it has different affinities for positive supercoils,which it prefers,and negative supercoils.The time distribution of the dissociation of gyrase from DNA has a double-exponential form.We herein propose a model to explain this distribution and compare the results with those of other models.  相似文献   

7.
Single kinesin molecules studied with a molecular force clamp.   总被引:18,自引:0,他引:18  
K Visscher  M J Schnitzer  S M Block 《Nature》1999,400(6740):184-189
Kinesin is a two-headed, ATP-driven motor protein that moves processively along microtubules in discrete steps of 8 nm, probably by advancing each of its heads alternately in sequence. Molecular details of how the chemical energy stored in ATP is coupled to mechanical displacement remain obscure. To shed light on this question, a force clamp was constructed, based on a feedback-driven optical trap capable of maintaining constant loads on single kinesin motors. The instrument provides unprecedented resolution of molecular motion and permits mechanochemical studies under controlled external loads. Analysis of records of kinesin motion under variable ATP concentrations and loads revealed several new features. First, kinesin stepping appears to be tightly coupled to ATP hydrolysis over a wide range of forces, with a single hydrolysis per 8-nm mechanical advance. Second, the kinesin stall force depends on the ATP concentration. Third, increased loads reduce the maximum velocity as expected, but also raise the apparent Michaelis-Menten constant. The kinesin cycle therefore contains at least one load-dependent transition affecting the rate at which ATP molecules bind and subsequently commit to hydrolysis. It is likely that at least one other load-dependent rate exists, affecting turnover number. Together, these findings will necessitate revisions to our understanding of how kinesin motors function.  相似文献   

8.
Muscle contraction is driven by the motor protein myosin II, which binds transiently to an actin filament, generates a unitary filament displacement or 'working stroke', then detaches and repeats the cycle. The stroke size has been measured previously using isolated myosin II molecules at low load, with rather variable results, but not at the higher loads that the motor works against during muscle contraction. Here we used a novel X-ray-interference technique to measure the working stroke of myosin II at constant load in an intact muscle cell, preserving the native structure and function of the motor. We show that the stroke is smaller and slower at higher load. The stroke size at low load is likely to be set by a structural limit; at higher loads, the motor detaches from actin before reaching this limit. The load dependence of the myosin II stroke is the primary molecular determinant of the mechanical performance and efficiency of skeletal muscle.  相似文献   

9.
Ryu WS  Berry RM  Berg HC 《Nature》2000,403(6768):444-447
Rotation of the bacterial flagellar motor is driven by an ensemble of torque-generating units containing the proteins MotA and MotB. Here, by inducing expression of MotA in motA- cells under conditions of low viscous load, we show that the limiting speed of the motor is independent of the number of units: at vanishing load, one unit turns the motor as rapidly as many. This result indicates that each unit may remain attached to the rotor for most of its mechanochemical cycle, that is, that it has a high duty ratio. Thus, torque generators behave more like kinesin, the protein that moves vesicles along microtubules, than myosin, the protein that powers muscle. However, their translation rates, stepping frequencies and power outputs are much higher, being greater than 30 microm s(-1), 12 kHz and 1.5 x 10(5) pN nm s(-1), respectively.  相似文献   

10.
Tying a molecular knot with optical tweezers.   总被引:15,自引:0,他引:15  
Y Arai  R Yasuda  K Akashi  Y Harada  H Miyata  K Kinosita  H Itoh 《Nature》1999,399(6735):446-448
Filamentous structures are abundant in cells. Relatively rigid filaments, such as microtubules and actin, serve as intracellular scaffolds that support movement and force, and their mechanical properties are crucial to their function in the cell. Some aspects of the behaviour of DNA, meanwhile, depend critically on its flexibility-for example, DNA-binding proteins can induce sharp bends in the helix. The mechanical characterization of such filaments has generally been conducted without controlling the filament shape, by the observation of thermal motions or of the response to external forces or flows. Controlled buckling of a microtubule has been reported, but the analysis of the buckled shape was complicated. Here we report the continuous control of the radius of curvature of a molecular strand by tying a knot in it, using optical tweezers to manipulate the strand's ends. We find that actin filaments break at the knot when the knot diameter falls below 0.4 microm. The pulling force at breakage is around 1 pN, two orders of magnitude smaller than the tensile stress of a straight filament. The flexural rigidity of the filament remained unchanged down to this diameter. We have also knotted a single DNA molecule, opening up the possibility of studying curvature-dependent interactions with associated proteins. We find that the knotted DNA is stronger than actin.  相似文献   

11.
RecBCD is a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3' tail of the DNA. Here we present the crystal structure of RecBCD bound to a DNA substrate. In this initiation complex, the DNA duplex has been split across the RecC subunit to create a fork with the separated strands each heading towards different helicase motor subunits. The strands pass along tunnels within the complex, both emerging adjacent to the nuclease domain of RecB. Passage of the 3' tail through one of these tunnels provides a mechanism for the recognition of a Chi sequence by RecC within the context of double-stranded DNA. Gating of this tunnel suggests how nuclease activity might be regulated.  相似文献   

12.
To form an immature HIV-1 capsid, 1,500 HIV-1 Gag (p55) polypeptides must assemble properly along the host cell plasma membrane. Insect cells and many higher eukaryotic cell types support efficient capsid assembly, but yeast and murine cells do not, indicating that host machinery is required for immature HIV-1 capsid formation. Additionally, in a cell-free system that reconstitutes HIV-1 capsid formation, post-translational assembly events require ATP and a subcellular fraction, suggesting a requirement for a cellular ATP-binding protein. Here we identify such a protein (HP68), described previously as an RNase L inhibitor, and demonstrate that it associates post-translationally with HIV-1 Gag in a cell-free system and human T cells infected with HIV-1. Using a dominant negative mutant of HP68 in mammalian cells and depletion-reconstitution experiments in the cell-free system, we demonstrate that HP68 is essential for post-translational events in immature HIV-1 capsid assembly. Furthermore, in cells the HP68-Gag complex is associated with HIV-1 Vif, which is involved in virion morphogenesis and infectivity. These findings support a critical role for HP68 in post-translational events of HIV-1 assembly and reveal a previously unappreciated dimension of host-viral interaction.  相似文献   

13.
当一束光照射在物质上,光子与物质发生动量交换,部分动量转移到物质,等效于对物质产生作用力,称为光学力.这一作用力非常弱,一般在pN甚至更小的量级,但一定条件下,仍足以捕获和操纵纳米、微米尺度的物体.在金属纳米结构中,由于表面等离激元共振效应,诱导的局域电场可以产生增强的光学力,可以在亚波长尺度实现光操纵,并且由此衍生出一个极具吸引力的研究方向——表面等离激元光学力.本文介绍了利用金属纳米结构进行表面等离激元光学力操纵的最新研究进展.  相似文献   

14.
Gribble PL  Scott SH 《Nature》2002,417(6892):938-941
A hallmark of the human motor system is its ability to adapt motor patterns for different environmental conditions, such as when a skilled ice-hockey player accurately shoots a puck with or without protective equipment. Each object (stick, shoulder pad, elbow pad) imparts a distinct load upon the limb, and a key problem in motor neuroscience is to understand how the brain controls movement for different mechanical contexts. We addressed this issue by training non-human primates to make reaching movements with and without viscous loads applied to the shoulder and/or elbow joints, and then examined neural representations in primary motor cortex (MI) for each load condition. Even though the shoulder and elbow loads are mechanically independent, we found that some neurons responded to both of these single-joint loads. Furthermore, changes in activity of individual neurons during multi-joint loads could be predicted from their response to subordinate single-joint loads. These findings suggest that neural representations of different mechanical contexts in MI are organized in a highly structured manner that may provide a neural basis for how complex motor behaviour is learned from simpler motor tasks.  相似文献   

15.
Jiang W  Chang J  Jakana J  Weigele P  King J  Chiu W 《Nature》2006,439(7076):612-616
The critical viral components for packaging DNA, recognizing and binding to host cells, and injecting the condensed DNA into the host are organized at a single vertex of many icosahedral viruses. These component structures do not share icosahedral symmetry and cannot be resolved using a conventional icosahedral averaging method. Here we report the structure of the entire infectious Salmonella bacteriophage epsilon15 (ref. 1) determined from single-particle cryo-electron microscopy, without icosahedral averaging. This structure displays not only the icosahedral shell of 60 hexamers and 11 pentamers, but also the non-icosahedral components at one pentameric vertex. The densities at this vertex can be identified as the 12-subunit portal complex sandwiched between an internal cylindrical core and an external tail hub connecting to six projecting trimeric tailspikes. The viral genome is packed as coaxial coils in at least three outer layers with approximately 90 terminal nucleotides extending through the protein core and the portal complex and poised for injection. The shell protein from icosahedral reconstruction at higher resolution exhibits a similar fold to that of other double-stranded DNA viruses including herpesvirus, suggesting a common ancestor among these diverse viruses. The image reconstruction approach should be applicable to studying other biological nanomachines with components of mixed symmetries.  相似文献   

16.
V Q Nguyen  C Co  J J Li 《Nature》2001,411(6841):1068-1073
The stable propagation of genetic information requires that the entire genome of an organism be faithfully replicated once and only once each cell cycle. In eukaryotes, this replication is initiated at hundreds to thousands of replication origins distributed over the genome, each of which must be prohibited from re-initiating DNA replication within every cell cycle. How cells prevent re-initiation has been a long-standing question in cell biology. In several eukaryotes, cyclin-dependent kinases (CDKs) have been implicated in promoting the block to re-initiation, but exactly how they perform this function is unclear. Here we show that B-type CDKs in Saccharomyces cerevisiae prevent re-initiation through multiple overlapping mechanisms, including phosphorylation of the origin recognition complex (ORC), downregulation of Cdc6 activity, and nuclear exclusion of the Mcm2-7 complex. Only when all three inhibitory pathways are disrupted do origins re-initiate DNA replication in G2/M cells. These studies show that each of these three independent mechanisms of regulation is functionally important.  相似文献   

17.
Okada Y  Higuchi H  Hirokawa N 《Nature》2003,424(6948):574-577
Conventional isoforms of the motor protein kinesin behave functionally not as 'single molecules' but as 'two molecules' paired. This dimeric structure poses a barrier to solving its mechanism. To overcome this problem, we used an unconventional kinesin KIF1A (refs 5, 6) as a model molecule. KIF1A moves processively as an independent monomer, and can also work synergistically as a functional dimer. Here we show, by measuring its movement with an optical trapping system, that a single ATP hydrolysis triggers a single stepping movement of a single KIF1A monomer. The step size is distributed stochastically around multiples of 8 nm with a gaussian-like envelope and a standard deviation of 15 nm. On average, the step is directional to the microtubule's plus-end against a load force of up to 0.15 pN. As the source for this directional movement, we show that KIF1A moves to the microtubule's plus-end by approximately 3 nm on average on binding to the microtubule, presumably by preferential binding to tubulin on the plus-end side. We propose a simple physical formulation to explain the movement of KIF1A.  相似文献   

18.
H Sakakibara  H Kojima  Y Sakai  E Katayama  K Oiwa 《Nature》1999,400(6744):586-590
Axonemal dyneins are force-generating ATPases that produce movement of eukaryotic cilia and flagella. Several studies indicate that inner-arm dyneins mainly produce bending moments in flagella and that these motors have inherent oscillations in force and motility. Processive motors such as kinesins have high duty ratios of attached to total ATPase cycle (attached plus detached) times compared to sliding motors such as myosin. Here we provide evidence that subspecies-c, a single-headed axonemal inner-arm dynein, is processive but has a low duty ratio. Ultrastructurally it is similar to other dyneins, with a single globular head, long stem and a slender stalk that attaches to microtubules. In vitro studies of microtubules sliding over surfaces coated with subspecies-c at low densities (measured by single-molecule fluorescence) show that a single molecule is sufficient to move a microtubule more than 1 microm at 0.7 microm s(-1). When many motors interact the velocity is 5.1 microm s(-1), fitting a duty ratio of 0.14. Using optical trap nanometry, we show that beads carrying a single subspecies-c motor move processively along the microtubules in 8-nm steps but slip backwards under high loads. These results indicate that dynein subspecies-c functions in a very different way from conventional motor proteins, and has properties that could produce self-oscillation in vivo.  相似文献   

19.
为预测组合荷载作用下平板锚的承载力,假设锚-土之间不脱离,在ABAQUS下建立了法向力、切向力和弯矩共同作用的平板锚运动变形数值模型。与极限理论解对比,证明了上述数值模型的正确,并利用其计算了法向力、切向力和弯矩组合荷载作用下板锚的极限承载力,利用Murff模型拟合了组合荷载作用下板锚的极限承载力包络面。结果表明,Murff模型能较好地拟合组合荷载作用下板锚的极限承载力包络面。  相似文献   

20.
Gore J  Bryant Z  Nöllmann M  Le MU  Cozzarelli NR  Bustamante C 《Nature》2006,442(7104):836-839
DNA is often modelled as an isotropic rod, but its chiral structure suggests the possible importance of anisotropic mechanical properties, including coupling between twisting and stretching degrees of freedom. Simple physical intuition predicts that DNA should unwind under tension, as it is pulled towards a denatured structure. We used rotor bead tracking to directly measure twist-stretch coupling in single DNA molecules. Here we show that for small distortions, contrary to intuition, DNA overwinds under tension, reaching a maximum twist at a tension of approximately 30 pN. As tension is increased above this critical value, the DNA begins to unwind. The observed twist-stretch coupling predicts that DNA should also lengthen when overwound under constant tension, an effect that we quantitatively confirm. We present a simple model that explains these unusual mechanical properties, and also suggests a possible origin for the anomalously large torsional rigidity of DNA. Our results have implications for the action of DNA-binding proteins that must stretch and twist DNA to compensate for variability in the lengths of their binding sites. The requisite coupled DNA distortions are favoured by the intrinsic mechanical properties of the double helix reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号