首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
某类联图中保Wiener指数的树   总被引:1,自引:0,他引:1  
Wiener指数是指一个连通图中所有顶点之间的距离之和。给定一个连通图G,若存在G中一棵子树T,使得W(G)=W(T),则称T为G的一棵保Wiener指数的树,本文给出了对于满足特定条件的某类m+2k阶联图中均有保Wiener指数的子树。  相似文献   

2.
3.
本文利用Wiener指数、hyper-Wiener指数、Harary指数,分别给出了具有最小度条件的连通图是哈密顿-连通的以及从任一点出发都是可迹的充分条件。  相似文献   

4.
5.
Wiener指数是指一个连通图中所有顶点之间的距离之和.给定一个连通图G,若存在G中一棵子树T,使得W(G)=W(T),则称T为G的一可保Wiener指数的树.对于满足下列条件之一的m 1阶的扇形图P1∨Pm,证明了P1∨Pm中均有保Wiener指数的子树(i)m=t2 4t 1(t为任意正整数);(ii)m=21(t2 5t 3)(t≥6为正整数).  相似文献   

6.
一个连通图G的W iener指数定义为图G中所有点对的距离之和,本文主要研究双圈图去掉一条割边后其W iener指数的下界问题,并刻画了达到下界的极值图。  相似文献   

7.
Wiener指数是一种基于距离的图不变量,被定义为图中所有顶点对的距离总和。利用Wiener指数的定义,给出图变换后Wiener指数值之差的计算公式,得到围长与最大度均为3的单圈图的Wiener指数极小图的一些结构性质。  相似文献   

8.
通过对苯撑系统中的顶点对距离之和分成三类,对三类顶点的距离之和进行计算,给出了直链苯撑图的一般Wiener指数计算公式.  相似文献   

9.
令P+(n)表示圈没有公共边的n阶连通图的集合,P+(n,m)表示P+(n)中具有m(m≥1)个极小圈的连通图集合.证明了当n≥6时,P+(n,m)中具有最小度距离的图是花F(n,m),它是m个具有一个公共顶点的三角形并在公共顶点粘上n-1-2m条悬挂边的图;同时证明P+(n)中具有最小度距离的图是F(n,1),它是一个三角形并在一个顶点上粘n-3条悬挂边的图.  相似文献   

10.
对于连通图G,当3≤k≤n-2时,图G的Steiner k-general Wiener指数定义为■,其中d(S)表示点集S的Steiner距离,即图G中包含点集S的最小连通子树的边数.给出了单圈图的SW■(G)下界,并得到对应的极图.  相似文献   

11.
给出了n(n〉4)阶单圈图的Wiener指数随着圈长的变化而变化的特征,及当圈长固定时对应的单圈图的Wiener指数的上、下界.  相似文献   

12.
拓扑指数和谱理论是图论研究的两个分支.可以用拓扑指数来刻画图的性质,首先分别给出n阶简单图,n阶2-连通图含有Cn-1的边条件的相关引理,然后利用Wiener指数、Harary指数和hyper-Wiener指数分别给出n阶简单图,n阶2-连通图含有Cn-1的充分条件.  相似文献   

13.
图G=(V,E)是简单连通图,其中V和E为图G的顶点集和边集.图G的Wiener指数W(G),是指图中所有顶点对之间的距离之和,即W(G)=∑,{uv}■V(G) dG(u,v).文章给出了路的平方P2以及圈的平方C2的Wiener指数.  相似文献   

14.
关于一类*-λ-半环   总被引:1,自引:0,他引:1  
研究了*-λ-子半环,它是一类特殊的*-λ-半环,得出一些新的结果,并证明了若S是*-λ-半环,则对任意的整数n≥0,S上的n阶上(下)三角矩阵的集合也是*-λ-半环.  相似文献   

15.
设G=(V,E)是一个简单连通图,V和E分别为G的顶点集和边集.研究了单圈图的Wiener指数,利用单圈图的Wiener指数的计算公式,刻划了具有次大Wiener指数的单圈图的特征.  相似文献   

16.
G=(V,E)是一个简单连通图,其中V和E分别为G的顶点集和边集.一个图G的Wiener指数W(G)是指图G中所有顶点对之间的距离之和,即W(G)=∑{u,v}■G dG(u,v).文章给出了Pn∨Pm和Pn∨Cm的Wiener指数.  相似文献   

17.
设G=(V,E)为n阶简单连通图,若对每一个k(3≤k≤n),都含有长度为k的圈Ck,则称G为泛圈图。本文主要利用图及其补图的Wiener指数、hyper-Wiener指数,给出具有最小度条件的简单连通图是泛圈图的充分条件。  相似文献   

18.
一个图G的Wiener指数W(G)是一个基于距离的拓扑指数,它是图G中所有顶点之间的距离之和.文章证明了对于圈数λ≥7或9存在两类图G,它们满足性质W(G)=W(L(G)),这里L(G)表示图G的线图.  相似文献   

19.
一个图G的Wiener指数W(G)定义为G中所有点对的距离和,双圈图是一个具有n个点和n+1条边的连通图,我们根据两个圈的相对位置关系把双圈图分成三类,分别在这三类中给出了最小的Wiener指数,然后通过比较三类极值的大小得到了双圈图中具有最小Wiener指数的图。  相似文献   

20.
图G的Wiener指数定义为图G中所有点对的距离和。 讨论了空间三角链关于Wiener指数的极值问题,证明了线性三角链和螺旋三角链分别达到最大的Wiener指数和最小的Wiener指数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号