首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
La2O3—Ni/MgAl2O4催化剂的抗积炭性能研究   总被引:1,自引:0,他引:1  
采用脉冲反应和程序升温氧化反应考察了Ni/MgAl2O4和La2O3-Ni/MgAl2O4催化剂上CO歧化和甲烷催化分解的程度。结果表明,在相同处理条件下,Ni/MgAl2O4催化上CO的歧化程度远高于La2O3-Ni/MgAl2O4催化剂,Ni/MgAl2O4催化剂上甲烷分解产生的积炭量是La2O3-Ni/MgAl2O4催化剂上的4.28倍。利用甲烷处理La2O3-Ni/MgAl2O4催化上,其X光电子能谱(XPS)的C1s谱中的NixC的结合能比Ni/MgAl2O4催化剂高。这证实了催化上中较高正价态镧的存在,使得还原态催化剂的金属镍表面电子向镧上迁移;还原态金属粒子电子浓度降低,使得催化剂上CO歧化和甲烷分解反应的速率降低,从而使催化剂表现出较强的抗积炭能力。  相似文献   

2.
3.
测定了环戊烷在 Pt/γ-Al_2O_3上积炭的生成速率、表现活化能及反应级数,分析了积炭的组成结构及 H/C 值,提出积炭反应在不同温度有两种不同的积炭机理。  相似文献   

4.
载体MgO/Al2O3比对CH4/CO2重整Ni基催化剂性能的影响   总被引:1,自引:0,他引:1  
以MgO、Al2O3以及其混合物为载体,研究MgO/Al2O3mol比对CH4/CO2重整Ni基催化剂性能的影响.结果表明MgO/Al2O3=2(mol比)时其催化性能最好,积炭量最少.现场TPO实验表明CO岐化的积炭量均大于相应催化剂CH4解离的积炭量,表明CH4/CO2重整Ni基催化剂的积炭,CO歧化高于CH4解离  相似文献   

5.
用传统的浸渍法,溶胶-凝胶法和微乳化法三种不同的方法制备均含Ni/Al2O3(w(Ni)=10%)催化剂(分别简称为IMP,Sol-gel,ME). 利用比表面测定(BET)、原位X-射线粉末衍射(XRD)、透射电子显微镜(TEM)等手段研究这三种方法制备的催化剂的不同之处. 在常压下,固定床反应器中评价了三种催化剂对甲烷部分氧化制合成气反应的催化性能,发现三种催化剂的反应活性相当,但抗积炭性能却有明显不同. 其中ME催化剂抗积炭性能最好. 在温度为923 K,x(O2)/x(CH4)=0.53的条件下,ME催化剂反应20 h没检测出积炭生成,而反应5 h后,Sol-gel催化剂有少量积炭生成,平均积炭率为0.002 g*g-1*h-1,而IMP催化剂有大量积炭生成,平均积炭率为0.085 g*g-1*h-1. ME催化剂具有较大的比表面,较小的Ni颗粒且Ni与Al2O3之间有强烈的相互作用,这是微乳化法制备的Ni/Al2O3催化剂具有良好的抗积炭性能的重要原因.  相似文献   

6.
C,LC和SLC催化剂上的甲烷氧化偶联及其相应的C2产物的催化氧化和它们的气相反应的研究结果表明:这些催化剂明显地抑制C2H4的氧化反应,其抑制能力由小到大按C,LC,SLC顺序增加。而在甲烷氧化偶联反应中,C2产率和选择性同样按此顺序增加。这表明在甲烷氧化偶联反应中,催化剂C,LC,SLC起着抑制C2H4产物深度氧化的作用。这一顺序也同CO2-TPD表征的催化剂碱强度顺序一致。关联结果说明:这种  相似文献   

7.
采用溶胶凝胶法制备了镁铝尖晶石(MgAl2O4),研究了酸加入量对所制备样品的比表面积影响.氢离子浓度与金属离子浓度的比值为0.16时,样品的比表面积最高(133.9 m2·g-1), 比共沉淀法所制备样品的比表面积提高约40%. 负载5% CeO2所得催化剂CeO2/MgAl2O4 的甲烷起燃温度为420 ℃, 比共沉淀法催化剂降低55 ℃. DTA - TG结果表明,溶胶凝胶法制备的镁铝尖晶石前驱物含有较多量的水,550 ℃脱水完全,而共沉淀法所制备前驱物完全脱水温度升高至700 ℃.  相似文献   

8.
采用溶胶-凝胶技术,聚乙烯醇(PVA)为络合剂,合成出尖晶石型大表面纳米粒子MgAl2O4,用硝酸盐浸渍分解法制备出负载型La0.8Sr0.2CoO3/MgAl2O4催化剂,以XRD、BET、TPR、二甲苯完全氧化等手段,研究了合成条件对形成的MgAl2O4性质的影响及催化剂的性能,并与负载型La0.8Sr0.2CoO3/堇青石、La0.8Sr0.2CoO3/γ-Al2O3催化剂进行了对比,结果表明,活性组分在MgAl2O4载体上是高度分解的,负载型La0.8Sr0.2CoO3/MgAl2O4催化剂具有优良的催化活性和抗高温烧结能力。  相似文献   

9.
10.
Ni-Ce/Al2O3催化剂上CH4、CO2和O2催化重整制合成气   总被引:3,自引:2,他引:3  
采用TG、TPR、XRD、XPS等多种手段对Ni-Ce/Al2O3催化剂进行了研究,考察了催化剂的制备方法及预处理条件等对催化剂性能的影响。结果,较佳的催化剂焙烧温度为780℃,还原温度为775℃、在浸渍法制备的催化剂中,Ni物种主要以NiAl2O4尖晶石的形成存在,而共沉淀法制备催化剂的表面则存在着较多的氧化镍,镍铝尖晶石的晶型结构较差,晶粒细小,在反应过程中可合部被还原成具有催化活性的金属镍物,从而使该催化剂在反应中表现出较好的催化活性。  相似文献   

11.
用化学共沉淀法制备了NiFe2O4粉体样品,采用溶胶-凝胶(sol-gel)法制备了La2/3Sr1/3MnO3的多晶样品.用无压烧结制备了名义组分为(La2/3 Sr1/3MnO3)1-x(NiFe2O4)x(x=0,0.05,0.10,0.20)的多晶样品.在1.8×107A/m磁场作用下,当x=0时,样品的磁电阻随温度几乎成线性变化;当x=0.10时,样品在335 K时出现峰值,磁电阻值达35%.  相似文献   

12.
用X射线衍射法(XRD)和骨架红外光谱法(IR)研究了La2O3/Y沸石上La2O3与Y型沸石的相互作用.结果表明:La2O3在Y型沸石上自发分散,且分散阈值较高;La2O3的引入对载体的结构具有破坏作用,且随负载量的增大骨架破坏得越厉害;La2O3负载过程中有部分La进入骨架内部.  相似文献   

13.
本文制备了Bi2 O3-Ni2 O3纳米粉末,对其结构进行了表征,并研究了制备的纳米粉末对苯光催化降解的影响因素。结果表明:制备的纳米粉末由Bi2 O3和Ni2 O3复合而成,经750℃焙烧的光催化剂对苯光催化降解活性最高;水蒸气的加入和氧气的增加,都能促进苯的降解率增大;由Lang-muir-Hinshelwood动力学模型得出苯的光催化降解反应的吸附常数和反应速率常数分别为0.1398L·μmol-1和0.0024μmol· L-1· min-1。  相似文献   

14.
采用共浸法制备了PtSn/CCA催化剂,利用在线色谱微反实验装置评价了此类催化剂对甲基环己烷脱氢反应的活性和抗炭性能,初步研究了PtSn/CCA催化剂的物理化学结构。实验结果表明,PtSn/CCA催化剂具有较好的低温(300~350℃)脱氢活性和抗积炭稳定性。覆炭可改变γAl2O3载体的孔结构参数,降低其表面酸性。覆炭载体的炭主要以单层或扁平多层块状结构沉积在载体表面上,并具有一定的石墨化程度。  相似文献   

15.
Pt-Sn/CCA催化剂性能及结构表征   总被引:1,自引:0,他引:1  
采用共浸法制备了Pt-Sn/CCA催化剂,利用在线色谱微反实验装置评价了此类催化剂对甲基环己烷脱氢反应的活性和抗炭性能,初步研究了Pt-Sn/CCA催化剂的物理化学结构.实验结果表明,Pt-Sn/CCA催化剂具有较好的低温(300~350 ℃)脱氢活性和抗积炭稳定性.覆炭可改变γ-Al2O3载体的孔结构参数,降低其表面酸性.覆炭载体的炭主要以单层或扁平多层块状结构沉积在载体表面上,并具有一定的石墨化程度.  相似文献   

16.
高温超导材料YBa2Cu4O8(YBCO)和铁磁材料La2/3Ca1/3MnO3(LCMO)形成的三层薄膜LCMO/YBCO/LCMO由对靶溅射技术制得.与YBCO单层薄膜相比,由于超导/铁磁系统中的磁性邻近效应,三层薄膜表现出较低的超导转变温度(Tc,ON).与LCMO单层膜相比,三层薄膜的金属半导体转变温度(TMS)被提高并且强烈依赖于YBCO层的厚度.随中间层厚度的变化,磁电阻显示出非单调行为,长振荡周期被发现.结果表明,当YBCO处于正常态时两层LCMO膜之间存左着磁性自旋相互作用.  相似文献   

17.
采用溶胶凝胶法,以硝酸钇和柠檬酸为原料对LiNi1/3Co1/3Mn1/3O2进行包覆. 室温下,在2.8~4.3 V和1 C充放电条件下,以柠檬酸协助的Y2O3包覆LiNi1/3Co1/3Mn1/3O2材料作为正极,锂片作为负极,制成的电池50次循环容量没有衰减,而未加柠檬酸的Y2O3包覆LiNi1/3Co1/3Mn1/3O2材料50次循环容量保持率为96.72%,未经过包覆的材料只有91.03%.  相似文献   

18.
镁铝尖晶石本征色心的计算机模拟   总被引:1,自引:1,他引:1  
利用计算机模拟技术和经验参数化方法,通过对镁铝尖晶石(MgAl2O4)晶体结构、晶格形成能及本征缺陷形成能的计算,论证了镁空位VMg^2-、氧空位Vo^2 和少量的AlMg^ 是MgAl2O4中的本征点缺陷.并指出其会以[VMg^2--Vo^2 ]空位对和[VMg^2--2lMg^ ]的形式实现电荷补偿.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号