首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Beach D  Nurse P 《Nature》1981,290(5802):140-142
The fission yeast, Schizosaccharomyces pombe, has been used extensively for genetic studies but until now it has not been utilized as a host organism for DNA cloning. Here we describe a method for high-frequency transformation fo a leu 1(-) strain of this yeast with hybrid plasmids containing the Saccharomyces cerevisiae LEu 2(+) gene, a bacterial plasmid and either the S. cerevisiae 2 μm plasmid or autonomously replicating sequences (ars)(1) derived from S. pombe DNA. Some of the plasmids contain unique restriction sites which make them suitable for the isolation of S. pombe genes, and they can also be used for the exchange of DNA between S. pombe and S. cerevisiae.  相似文献   

2.
Actin dynamics in the contractile ring during cytokinesis in fission yeast   总被引:3,自引:0,他引:3  
Pelham RJ  Chang F 《Nature》2002,419(6902):82-86
Cytokinesis in many eukaryotes requires a contractile ring of actin and myosin that cleaves the cell in two. Little is known about how actin filaments and other components assemble into this ring structure and generate force. Here we show that the contractile ring in the fission yeast Schizosaccharomyces pombe is an active site of actin assembly. This actin polymerization activity requires Arp3, the formin Cdc12, profilin and WASP, but not myosin II or IQGAP proteins. Both newly polymerized actin filaments and pre-existing actin cables can contribute to the initial assembly of the ring. Once formed, the ring remains a dynamic structure in which actin and other ring components continuously assemble and disassemble from the ring every minute. The rate of actin polymerization can influence the rate of cleavage. Thus, actin polymerization driven by the Arp2/3 complex and formins is a central process in cytokinesis. Our studies show that cytokinesis is a more dynamic process than previously thought and provide a perspective on the mechanism of cell division.  相似文献   

3.
S L Forsburg  P Nurse 《Nature》1991,351(6323):245-248
In rapidly growing cells of the budding yeast Saccharomyces cerevisiae, the cell cycle is regulated chiefly at Start, just before the G1-S boundary, whereas in the fission yeast Schizosaccharomyces pombe, the cycle is predominantly regulated at G2-M. Both control points are present in both yeasts, and both require the p34cdc2 protein kinase. At G2-M, p34cdc2 kinase activity in S. pombe requires a B-type cyclin in a complex with p34cdc2; this complex is the same as MPF (maturation promoting factor). The p34cdc2 activity at the G1-S transition in S. cerevisiae may be regulated by a similar cyclin complex, using one of the products of a new class of cyclin genes (CLN1, CLN2 and WHI1 (DAF1/CLN3)). At least one is required for progression through the G1-S phase, and deletion of all three leads to G1 arrest. WHI1 was isolated as a dominant allele causing budding yeast cells to divide at a reduced size and was later independently identified as DAF1, a dominant allele of which rendered the cells refractory to the G1-arrest induced by the mating pheromone alpha-factor. The dominant alleles are truncations thought to yield proteins of increased stability, and the cells are accelerated through G1. Without WHI1 function, the cells are hypersensitive to alpha-factor, enlarged and delayed in G1. Heretofore, this G1-class of cyclins has not been identified in other organisms. We have isolated a G1-type cyclin gene called puc1+ from S. pombe, using a functional assay in S. cerevisiae. Expression of puc1+ in S. pombe indicates that it has a cyclin-like role in the fission yeast distinct from the role of the B-type mitotic cyclin.  相似文献   

4.
Y Gachet  S Tournier  J B Millar  J S Hyams 《Nature》2001,412(6844):352-355
The accurate segregation of chromosomes at mitosis depends on a correctly assembled bipolar spindle that exerts balanced forces on each sister chromatid. The integrity of mitotic chromosome segregation is ensured by the spindle assembly checkpoint (SAC) that delays mitosis in response to defective spindle organisation or failure of chromosome attachment. Here we describe a distinct mitotic checkpoint in the fission yeast, Schizosaccharomyces pombe, that monitors the integrity of the actin cytoskeleton and delays sister chromatid separation, spindle elongation and cytokinesis until spindle poles have been properly oriented. This mitotic delay is imposed by a stress-activated mitogen-activated protein (MAP) kinase pathway but is independent of the anaphase-promoting complex (APC).  相似文献   

5.
6.
7.
A new protease required for cell-cycle progression in yeast   总被引:47,自引:0,他引:47  
Li SJ  Hochstrasser M 《Nature》1999,398(6724):246-251
In eukaryotes, protein function can be modulated by ligation to ubiquitin or to ubiquitin-like proteins (Ubl proteins). The vertebrate Ubl protein SUMO-1 is only 18% identical to ubiquitin but is 48% identical to the yeast protein Smt3. Both SUMO-1 and Smt3 are ligated to cellular proteins, and protein conjugation to SUMO-1/Smt3 is involved in many physiological processes. It remained unknown, however, whether deconjugation of SUMO-1/Smt3 from proteins is also essential. Here we describe a yeast Ubl-specific protease, Ulp1, which cleaves proteins from Smt3 and SUMO-1 but not from ubiquitin. Ulp1 is unrelated to any known deubiquitinating enzyme but shows distant similarity to certain viral proteases, indicating the existence of a widely conserved protease fold. Proteins related to Ulp1 are present in many organisms, including several human pathogens. The pattern of Smt3-coupled proteins in yeast changes markedly throughout the cell cycle, and specific conjugates accumulate in ulp1 mutants. Ulp1 has several functions, including an essential role in the G2/M phase of the cell cycle.  相似文献   

8.
J Z Dalgaard  A J Klar 《Nature》1999,400(6740):181-184
The fission yeast Schizosaccharomyces pombe normally has haploid cells of two mating types, which differ at the chromosomal locus mat1. After two consecutive asymmetric cell divisions, only one in four 'grand-daughter' cells undergoes a 'mating-type switch', in which genetic information is transferred to mat1 from the mat2-P or mat3-M donor loci. This switching pattern probably results from an imprinting event at mat1 that marks one sister chromatid in a strand-specific manner, and is related to a site-specific, double-stranded DNA break at mat1. Here we show that the genetic imprint is a strand-specific, alkali-labile DNA modification at mat1. The DNA break is an artefact, created from the imprint during DNA purification. We also propose and test the model that mat1 is preferentially replicated by a centromere-distal origin(s), so that the strand-specific imprint occurs only during lagging-strand synthesis. Altering the origin of replication, by inverting mat1 or introducing an origin of replication, affects the imprinting and switching efficiencies in predicted ways. Two-dimensional gel analysis confirmed that mat1 is preferentially replicated by a centromere-distal origin(s). Thus, the DNA replication machinery may confer different developmental potential to sister cells.  相似文献   

9.
Fantes P 《Nature》1979,279(5712):428-430
THERE is currently much interest in the mechanism which controls the timing of cell division. Certain features of the control have been found to be common to a variety of eukaryotes. In particular, the importance of cell size as a parameter affecting cell cycle progress has been reported for mammalian cells(1,2) and for several single-celled eukaryotes(3-6). Another feature common to several systems is that growth conditions have a direct effect on the timing of division cycle events(7-9), and on cell size(9,10). In the fission yeast Schizosaccharomyces pombe, both cell size(6) and nutritional conditions(9) have been shown to affect cycle kinetics. The organism has been used extensively as a model eukaryotic system, largely because of the ease of measuring cell size and because division occurs by binary fission(11). More recently, its genetic tractability has led to the isolation of cell division cycle (cdc) mutants(12), and also of wee mutants altered in the control coordinating growth with the division cycle(13-15). The existence of such control mutants allows a more direct approach to the investigation of the molecular basis of division control, in contrast to the indirect methods used in other systems(4,16-18). wee mutants are so far unique to S. pombe. The most conspicuous property of wee mutants is their reduced cell size(13,14). Analysis of these mutants(15,19) and other evidence(9) has shown that control over cell division timing normally acts at entry to mitosis. As the function of a number of cdc genes is specifically required for mitosis(12), interactions between wee and cdc mutants which affect mitosis might be expected. I report here that the mitotic defect caused by a defective cdc25 allele is suppressed in wee mutants. Suppression by wee1 mutants is almost complete, while the wee2.1 mutation is a less effective suppressor. The significance of these findings for genetic models of the control of mitosis is considered.  相似文献   

10.
11.
J Lingner  J Kellermann  W Keller 《Nature》1991,354(6353):496-498
Poly(A) polymerase is essential for the maturation of messenger RNA, adding tracts of adenosine residues to the 3' end of precursor RNA generated by endonucleolytic cleavage. This mechanism of mRNA 3' processing seems to be similar in yeast and in higher eucaryotes, although there are differences in the recognition signals in the pre-mRNA. Here we describe the cloning of the gene for yeast poly(A) polymerase. The enzyme is encoded by a single and essential gene located near the centromere on the left arm of chromosome 11. Poly(A) polymerase purified from recombinant Escherichia coli has the same physical and biochemical properties as the yeast enzyme. The yeast poly(A) polymerase shares features of sequence with its mammalian homologue.  相似文献   

12.
The gene for the U6 small nuclear RNA in fission yeast has an intron   总被引:34,自引:0,他引:34  
T Tani  Y Ohshima 《Nature》1989,337(6202):87-90
  相似文献   

13.
C E Alfa  B Ducommun  D Beach  J S Hyams 《Nature》1990,347(6294):680-682
Cyclins, as subunits of the protein kinase encoded by the cdc2 gene are major controlling elements of the eukaryotic cell cycle. The fission yeast Schizosaccharomyces pombe has a B-type cyclin, which is a nuclear protein encoded by the cdc13 gene. Here we demonstrate the presence of two spatially distinct cdc13 cyclin populations in the nucleus of S. pombe, one of which is associated with the mitotic spindle poles. Both populations colocalize with the product of the cdc2 gene (p34cdc2). Treatment of cells with the antimicrotubule drug thiabendazole prevents cyclin degradation and blocks the tyrosine dephosphorylation and activation of cdc2. These results suggest a key regulatory role of the cdc2-cyclin complex in the initiation of mitotic spindle formation and also that mitotic microtubule function is required for cdc2 activation.  相似文献   

14.
I Hagan  M Yanagida 《Nature》1992,356(6364):74-76
Several mitotic and meiotic gene products are related to the microtubule motor kinesin, providing insight into the molecular basis of the complex motile events responsible for spindle formation and function. Of these genes, three have been shown to affect spindle structure when mutated. The most severe phenotype is seen in Aspergillus nidulans bimC and Schizosaccharomyces pombe cut7 mutants. In both fungi the intranuclear spindle is bipolar, with microtubules that emanate from spindle pole bodies at either pole, interdigitating in a central overlap zone. In bimC and cut7 mutants, microtubule interdigitation does not appear to take place, instead two unconnected half spindles form and chromosome separation fails. Here we report that cut7 protein concentrates on or near the spindle pole bodies throughout mitotic and meiotic nuclear division and associates with mitotic spindle microtubules in a stage-specific manner, associating with the mid-anaphase B midzone. In cut7ts mutants, spindle pole bodies stain but mitotic microtubules do not.  相似文献   

15.
L Bare  A G Bruce  R Gesteland  O C Uhlenbeck 《Nature》1983,305(5934):554-556
The nucleotide at position 33 on the 5' side of the anticodon of almost all tRNAs is a uridine. Crystallographic studies of different tRNAs reveal that although the precise orientation of uridine-33 is not always the same, it connects the anticodon stacked along the 3' side of the loop with the pyrimidine-32 stacked on the 5' side of the loop. The remarkably conserved nature of uridine-33 and its unique position in the anticodon loop structure has led to suggestions that this nucleotide has an essential role in the translational mechanism. We have developed a biochemical procedure to replace nucleotides 33-35 in yeast tRNATyr with any desired sequence and used it to construct amber suppressor tRNAs having different nucleotides at position 33. As all of these synthetic amber suppressor tRNAs functioned well in eukaryotic in vitro suppression assays, we conclude that uridine-33 does not have an obligatory role in the translation mechanism.  相似文献   

16.
K P Baker  A Schaniel  D Vestweber  G Schatz 《Nature》1990,348(6302):605-609
The gene encoding ISP42, an integral outermembrane protein located at the yeast mitochondrial protein import site was cloned, sequenced and modified. Yeast cells depleted of ISP42 accumulate uncleaved mitochondrial precursor proteins and then die. ISP42 is the first mitochondrial membrane protein shown to be indispensable for protein import and cell viability.  相似文献   

17.
The Cdt1 protein is required to license DNA for replication in fission yeast   总被引:18,自引:0,他引:18  
Nishitani H  Lygerou Z  Nishimoto T  Nurse P 《Nature》2000,404(6778):625-628
To maintain genome stability in eukaryotic cells, DNA is licensed for replication only after the cell has completed mitosis, ensuring that DNA synthesis (S phase) occurs once every cell cycle. This licensing control is thought to require the protein Cdc6 (Cdc18 in fission yeast) as a mediator for association of minichromosome maintenance (MCM) proteins with chromatin. The control is overridden in fission yeast by overexpressing Cdc18 (ref. 11) which leads to continued DNA synthesis in the absence of mitosis. Other factors acting in this control have been postulated and we have used a re-replication assay to identify Cdt1 (ref. 14) as one such factor. Cdt1 cooperates with Cdc18 to promote DNA replication, interacts with Cdc18, is located in the nucleus, and its concentration peaks as cells finish mitosis and proceed to S phase. Both Cdc18 and Cdt1 are required to load the MCM protein Cdc21 onto chromatin at the end of mitosis and this is necessary to initiate DNA replication. Genes related to Cdt1 have been found in Metazoa and plants (A. Whitaker, I. Roysman and T. Orr-Weaver, personal communication), suggesting that the cooperation of Cdc6/Cdc18 with Cdt1 to load MCM proteins onto chromatin may be a generally conserved feature of DNA licensing in eukaryotes.  相似文献   

18.
19.
Cell cycle is a programmed process, during which a cell proliferates to two daughter cells. The eukaryotic or-ganisms share the same characters, such as four cycle phases G1, S, G2 and M, the evolutionally conserved cell cycle proteins and its dependent kinases, and the check-points mechanism[1,2]. Due to the different functions and the complicated interactions of these proteins involved in cell cycle, it is very difficult to understand the regulatory mechanism of cell cycle in a whole sense …  相似文献   

20.
S D Porter  M Smith 《Nature》1986,320(6064):766-768
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号