首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
采用X射线衍射、扫描电子显微镜、光学显微镜、室温拉伸和浸泡失重法研究了挤压态纯Zn和Zn-0.2Mg-xCa(x=0,0.06,0.15,0.3)(质量分数)合金微观组织、力学性能和体外降解速率.结果表明:200℃挤压后,纯Zn晶粒尺寸达到100μm;Zn-0.2Mg-xCa合金中晶粒尺寸均维持在15~20μm之间,并存在第二相Mg2Zn11和CaZn13.随着Ca含量增加,CaZn13含量逐渐增加,且当Ca质量分数达到0.15%以上时CaZn13尺寸达到15~50μm.纯Zn的屈服强度和延伸率分别为64MPa和14%,Zn-0.2Mg-xCa合金随着Ca含量增加屈服强度由180MPa提高到约200MPa,延伸率则逐渐由18%降低到6%.纯Zn和Zn-0.2Mg-xCa合金在SBF溶液中降解速率维持在0.05~0.15mm·a-1,而且随Ca的添加降解速率略有降低.  相似文献   

2.
采用金相显微镜、扫描电子显微镜、透射电子显微镜、万能拉伸试验机对Mg-xZn-2.8Nd-0.6Zr-0.6Cd合金的微观组织和拉伸力学性能进行研究,讨论不同Zn含量对合金力学性能的影响.研究结果表明:随着Zn含量的增加,合金的晶粒逐渐细化,双峰晶组织明显,强度总体呈上升趋势.合金B的屈服强度明显比合金C的屈服强度高,因为晶界上第二相成份的Zn/Nd原子数比发生变化,合金B(3.85% Zn,质量分数,下同)中的Zn/Nd原子数比只为1.2左右,但是其理论值为3.10,合金C(5.20% Zn)中的Zn/Nd原子数比为3.03左右,理论比值为4.11,导致了挤压过程中动态分解产物β1'相的数量在合金B中要比合金C中密集,使得合金B的屈服强度要比合金C的高.挤压后,合金D(6.54% Zn)获得了最高的屈服强度和抗拉强度,分别为340 MPa和363MPa,而且保持了高达9%的伸长率.  相似文献   

3.
通过室温拉伸试验、腐蚀性能测试和光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等研究Zr质量分数对7085铝合金组织和性能各向异性的影响。研究结果表明:合金的强度随着Zr质量分数增加先增加再减小,Zr质量分数为0.12%时合金的强度出现峰值;添加Zr抑制合金再结晶,提高其强度和抗剥落腐蚀性能;挤压方向(L-T)力学性能均优于横向(T-L),Zr质量分数为0.12%时、各向异性最小;横截面的抗腐蚀性能优于长截面,Zr质量分数为0.14%时,抗腐蚀性能最佳且各向异性最小;合金的性能各向异性随Zr质量分数增加而先减小再后增大。Zr质量分数最佳添加范围为0.12%~0.14%,能保持高强度耐腐蚀性能并具有较低的各向异性。  相似文献   

4.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及室温拉伸、末端淬火等测试方法,研究了Cu对Al-7.6Zn-1.6Mg-XCu合金组织、断裂和淬透性的影响.研究表明:随着Cu质量分数的增加,合金的强度先增加后减小,合金的强度在Cu质量分数为1.70%时出现峰值;合金的力学性能各向异性随Cu质量分数的增加,先减小再增大,Cu质量分数为1.45%时,合金的力学性能各向异性最小;随着Cu质量分数的升高,合金横向断裂模式从以穿晶断裂为主向沿晶断裂转变.与合金纵向延伸率变化幅度比较,Cu质量分数对合金横向延伸率影响更加显著.随着Cu质量分数的升高和淬火速率降低,合金时效后平衡相的周围出现明显的无沉淀析出带,导致合金硬度下降明显,淬透性也大大降低.  相似文献   

5.
利用Al-La中间合金制备了AlSi10Cu0.2Mg0.2Mn-x La和Zn Al12Cu1(Mg)-x La铸造合金,考察了不同的La含量对合金组织和抗拉强度、伸长率、冲击强度等性能的影响.研究结果表明:微量稀土La可以细化合金的晶粒,改变Si相晶粒大小和形状.与未添加La的合金相比,含有微量稀土La的AlSi10Cu0.2Mg0.2Mn-x La合金和Zn Al12Cu1(Mg)-x La合金具有更优良的力学性能.当AlSi10Cu0.2Mg0.2Mn铸造合金中La添加量为0.15%(质量分数)时,铸造合金的伸长率增加2.7倍.含有0.1%(质量分数)La的Zn Al12Cu1(M g)-x La合金抗拉强度和伸长率相比于未添加稀土La的合金,分别增强1.3倍和3.2倍.含有0.3%(质量分数)La时Zn Al12Cu1(Mg)-x La的硬度增强1.8倍,但冲击强度是含有0.15%(质量分数)La时最高.综合考虑Zn Al12Cu1(Mg)-x La铸造合金的机械性能,稀土La的最优添加量为0.1%~0.2%(质量分数).  相似文献   

6.
采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及室温拉伸、剥落腐蚀等测试方法,研究了微量的Si对Al-Zn-Mg-Cu铝合金组织、性能和局部腐蚀的影响.研究表明:随着Si含量增加,合金的强度先增加再减小,0.040%Si(质量分数)时合金的强度出现峰值;合金的力学性能各向异性随Si含量的增加,先减小再增大,0.025%Si时,力学性能各向异性最小;随着Si含量的升高,合金横向断裂模式从以穿晶断裂为主向沿晶断裂转变.与合金纵向强度变化幅度比较,Si含量对合金横向强度影响显著.  相似文献   

7.
使用常规铸锭冶金方法制备了不同Zn含量的AlMgSiCu合金.利用光学显微镜、扫描电镜、拉伸测试和纳米压痕方法研究了Zn含量对铝合金微观组织和力学性能的影响.研究发现Zn元素能够轻微细化AlMgSiCu合金铸态组织.随着合金中Zn含量的增加,铸态铝合金的晶界变宽,晶界析出相增多.Zn的添加未影响铸态合金的相组成和形貌.随Zn含量的增加,铝合金的强度和延伸率呈现先增后降的变化趋势,添加质量分数0.5%Zn可使合金具有最高的强度,而0.75%Zn使合金获得最高延伸率.对含Zn铝合金的纳米压痕测量表明:随着Zn含量的增加,铝合金的弹性模量呈现逐步降低的趋势.  相似文献   

8.
采用光学显微镜及万能力学拉伸试验机研究Zr质量分数(0.3%,0.6%,0.9%)对Mg-6Zn合金铸态、热处理后显微组织及力学性能的影响.研究结果表明:加入Zr元素后,合金的组织由树枝状转为颗粒状并分布于晶界,Zr质量分数增加到0.9%时,晶粒边界出现组织富集,质量分数为0.6%时合金则分布均匀.铸态及热处理条件下,合金的抗拉强度均呈现先上升后下降的变化趋势,含Zr质量分数0.6%时,合金的力学性能最高,铸态拉伸强度达到249 MPa,热处理后则为274 MPa.采用等温热处理法研究合金非枝晶组织随保温温度及保温时间的变化规律,保温温度620℃,保温时间30min时,含Zr质量分数0.6%的合金非枝晶组织圆整、细小.  相似文献   

9.
制备了3种不同成分的Mg-Gd-Y-Zn四元合金,并对其显微组织和力学性能进行了系统的研究.结果显示,Mg-6Gd-2Y-1Zn和Mg-6Gd-3Y-1Zn合金的铸态组织主要由α-Mg,(Mg,Zn)3Gd和18R-LPSO结构的Mg12Y1Zn1相组成.而Mg-6Gd-4Y-1Zn合金的铸态组织则主要由α-Mg,Mg24(YGdZn)5和Mg12Y1Zn1相组成.合金退火后,3种合金的退火组织均由α-Mg,Mg12Y1Zn1和14H-LPSO相组成.热挤压过程中Mg12Y1Zn1相被拉长,呈长条状沿挤压方向排列,而14H-LPSO相则分布于条状分布的Mg12Y1Zn1之间.挤压态合金经固溶和225℃时效(T6)处理后,显微组织中呈现14H-LPSO结构和β’沉淀相共存.对挤压后的合金直接进行时效处理(T5)过程中也发生了β’沉淀相,但14H-LPSO相体积分数少于T6态.3种合金中Mg-6Gd-4Y-1Zn合金在T6态的性能最好.  相似文献   

10.
通过测定时效曲线,结合金相显微镜和透射电镜等组织观察以及DSC分析,研究Zn和Mg质量比(4.10和4.67)对7055铝合金淬火敏感性的影响.结果表明:在120℃时效时,合金的淬火敏感性随着时效时间的延长而降低,而Zn和Mg质量比低的合金比Zn和Mg质量比高的合金的淬火敏感性高7%~11%:空气淬火时,Zn和Mg质量比低合金的再结晶晶粒内析出了较多粗大的η(MgZn2)平衡相,因而减少了过饱和固溶体中溶质原子的数量,降低合金的时效强化效果,提高合金的淬火敏感性:然而,Zn和Mg质量比高的合金在空气淬火过程中析出的η相较Zn和Mg质量比低的合金少,且在局部形成了S(A12CuMg)相.  相似文献   

11.
在氩气氛围保护的手套箱内熔炼和浇铸,并结合热轧工艺制备高强超轻Mg-(5%~8%)Li-1%Al-1%Zn合金.探讨了元素成分对镁锂合金材料的组织结构、强塑性和断裂形式的影响.结果表明:Li元素质量分数从5%上升到6%,材料的抗拉强度和塑性变形能力有明显提升;但随着Li元素增加到8%,材料抗拉强度有所降低,但是塑性变形能力保持提升,并提升明显.此外,在Li元素质量分数低于6%时,分别加入质量分数为1%的Al和Zn元素,可以明显提高材料的抗拉强度和塑性变形能力;但Li元素质量分数增加到8%时,1%Al和Zn元素的加入虽然能提升材料的抗拉强度,但是塑性变形能力急剧降低.金相与断口形貌观察结果表明,均匀分布的β-Li相是提升材料塑性变形能力的关键因素,Al和Zn元素的加入,有强化相的形成和析出,以提升材料强度.  相似文献   

12.
利用金相显微镜、扫描电镜、能谱分析仪、电子万能试验机等手段研究不同Al质量分数(1%、3%、5%)对Mg-1%Cu合金显微组织和力学性能的影响.结果表明:随着Al质量分数的增加,合金晶粒尺寸呈不断减小的趋势,并由块状组织转变为枝晶组织;合金抗拉强度随着Al质量分数的增加而逐渐增加,当Al质量分数为5%时,抗拉强度为207MPa;合金延伸率随着Al质量分数的增加呈先增大后减小的趋势,当Al质量分数为3%时,延伸率最大,为13.59%.  相似文献   

13.
制备3种挤压比分别为7.0,9.6,19.6的Mg-1.5Gd-0.2Ni(质量分数,%)合金,研究挤压比对合金微观组织、力学性能及腐蚀性能的影响。研究结果表明:随着挤压比从7.0增加至19.6,Mg基体再结晶越充分,其组织更加细小、均匀,因而提高了合金的综合力学性能。当挤压比为19.6时,合金的抗拉强度为228 MPa,屈服强度为167 MPa,断后伸长率为22.5%。挤压态合金在质量分数为3%KCl中的腐蚀速率比铸态合金的低。  相似文献   

14.
以Mg-1.3Mn合金为基合金,添加质量分数为1.0%或者2.0%的Ce以及质量分数为2.0%~6.0%的Zn,进行多元合金化,研究Ce,Zn对Mg-1.3Mn合金显微组织和力学性能的影响.实验结果表明:在Mg-1.3Mn合金中,一定量Ce,Zn的加入不但能明显地细化晶粒,而且能提高实验合金的抗拉强度和硬度.Mg-1.3Mn-1.0Ce-xZn合金的室温拉伸断裂机理随着Zn含量的增加也将发生改变.  相似文献   

15.
通过铸锭冶金法制备5083铝合金、加0.7%Zn(质量分数)5083铝合金、β(Al3Mg2)相和τ(Mg32(Al,Zn)49)相,对添加Zn和未添加Zn的5083合金进行冷轧180℃,2h退火处理后,利用剥落腐蚀测试、极化曲线测定和透射电镜研究少量Zn对冷轧退火后5083铝合金组织和腐蚀性能的影响,并通过电化学测试研究β相、τ相与α(Al)的电化学特征.研究结果表明:退火后不含Zn的合金中杆状的β相在晶界连续分布,合金的剥落腐蚀等级为EA,腐蚀电位为-0.651V.而加入0.7%Zn的合金在相同状态下,τ相部分取代了β相,且其主要呈球状,在晶界、晶内不连续分布,合金的剥落腐蚀等级为PB,腐蚀电位为-0.54 V.加少量Zn明显提高5083合金的耐蚀性.测得β相的腐蚀电位(-1.085V)比α(Al)的腐蚀电位(-0.812 V)低,而τ相的腐蚀电位(-0.813V)与α(Al)的腐蚀电位基本相同,τ相的形成缩小第二相与铝基体的电位差,优化合金的耐腐蚀性能.  相似文献   

16.
采用中频感应炉熔炼的方法制取样件.用光学显微镜分析在HP40合金中加入质量分数为5%~10%的Al元素时,各质量分数所对应的相组成和显微组织,研究在HP40合金中加入不同质量分数的Al对合金室温力学性能的影响以及合金力学性能与显微组织的关系.结果发现,加Al元素的HP40合金抗拉强度和屈服强度均随Al质量分数的增加而先升高后降低;合金的硬度随Al质量分数的增加而显著提高;合金的延伸率在Al质量分数为5%时,与未加Al的HP40合金一样未降低,而后随着Al质量分数的增加而降低.随着Al质量分数的增加,由于金属间化合物(Ni,Fe)Al的析出,合金的组织也发生了明显的变化,组织由网状结构变为枝状结构和羽毛状结构.  相似文献   

17.
Mg-Zn-Al系变形镁合金的显微组织和力学性能   总被引:1,自引:0,他引:1  
制备了成分基于Mg-(3-5)Zn-(1-3)Al的5种ZA系镁合金,并研究了合金在铸态和热挤压态的显微组织和力学性能.在ZA系列的铸态镁合金中,将zn含量(质量分数)固定在3%,提高Al含量,则第2相由致密的共晶相ε(Mg51Zn20)变成呈典型的离异共晶形貌的T(Mg32(Al,Zn)49)相.在ZA31基础上增加Zn含量没有引起合金显微组织中组成相发生变化,但中间相ε的体积分数增加.在280 ℃温度下的热挤压过程中,合金发生了动态再结晶,组织显著细化,且铸态组织中出现的中间相大部分溶入α-Mg基体.ZA系合金铸锭热挤压后,合金的强度和塑性均得到大幅度改善,其中合金ZA51具有最好的强度和塑性的匹配.结果表明ZA系合金具有良好的热加工性能.  相似文献   

18.
研究了5083合金添加1.5%~5%Zn(质量分数)对合金显微组织和力学性能的影响.通过SEM和EDS对铸态、均匀化处理后和轧制态合金的微观组织进行了表征并测试轧制态合金的拉伸性能.结果表明:铸态合金随Zn含量的增加偏析程度增加,金属间化合物主要为富Mg和富Zn相.均匀化处理后的合金具有良好的轧制性能,均匀化处理后合金金属间化合物量明显减少,部分未溶金属间化合物是Mg_2Si和Al_3Fe相.轧制显著降低晶粒尺寸,轧制试样的晶粒尺寸约150 nm.随着Zn含量增加轧制态合金的屈服强度和抗拉强度增加,延伸率有所下降.  相似文献   

19.
采用金相分析、扫描电镜分析和拉伸测试等手段研究了Ca含量(质量分数0.3%,0.6%和0.9%)对高应变速率轧制Mg-4Zn基合金板材显微组织、力学性能和耐生体腐蚀性能的影响.结果表明:加入Ca可以细化Mg-4Zn合金的动态再结晶晶粒,导致合金中残余第2相的含量增加和尺寸增大,并提高其抗拉强度和屈服强度.其中,Mg-4Zn-0.9Ca合金的抗拉强度和屈服强度分别为300 MPa和278 MPa,比基体合金分别提高了12.4%和68.5%.然而,合金的耐腐蚀性能和剩余抗拉强度随着Ca含量的增加而下降,可归因于合金中残余第2相含量的增加以及尺寸增大.Mg-4Zn合金板材中第2相比较细小、分布均匀,倾向于均匀腐蚀,在0.9%NaCl溶液中浸泡7d的平均腐蚀速率为0.80mg/(cm~2·d),浸泡7d,15d后的剩余抗拉强度分别为217 MPa和205 MPa.  相似文献   

20.
采用扫描电镜,X射线衍射仪以及高温蠕变试验机等试验手段研究了Y含量对Mg-5.5Zn重力铸造镁合金抗蠕变性能和应力指数的影响.结果表明:随着Y含量的增加,Mg-5.5Zn合金中依次出现了Mg7Zn3,Mg3Zn6Y(I-相)和Mg3Zn3Y2(W-相)3种不同类型的强化相,而合金中第二相种类、体积分数发生变化,导致抗蠕变性不断提高.在同样的蠕变条件下,高熔点稀土相比低熔点Mg7Zn3相更能降低合金的稳态蠕变速率.Mg-5.5Zn-(0.7,1.5,3.5)Y(wt%)3种合金在175℃/50~60 MPa下的应力指数n分别为5.2,3.2和2.2,在200℃/50~60 MPa下应力指数n分别为11.0,3.8和2.9.Mg-5.5Zn-0.7Y合金在175℃/55 MPa和200℃/55 MPa条件下的蠕变机制分别为位错攀移和Power-Law方程失效.Mg-5.5Zn-(1.5,3.5)Y两种合金在175~200℃/50~60 MPa范围下的蠕变机制是位错粘滞运动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号