首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Rho-family GTP-hydrolysing proteins (GTPases), Cdc42, Rac and Rho, act as molecular switches in signalling pathways that regulate cytoskeletal architecture, gene expression and progression of the cell cycle. Cdc42 and Rac transmit many signals through GTP-dependent binding to effector proteins containing a Cdc42/Rac-interactive-binding (CRIB) motif. One such effector, the Wiskott-Aldrich syndrome protein (WASP), is postulated to link activation of Cdc42 directly to the rearrangement of actin. Human mutations in WASP cause severe defects in haematopoletic cell function, leading to clinical symptoms of thrombocytopenia, immunodeficiency and eczema. Here we report the solution structure of a complex between activated Cdc42 and a minimal GTPase-binding domain (GBD) from WASP. An extended amino-terminal GBD peptide that includes the CRIB motif contacts the switch I, beta2 and alpha5 regions of Cdc42. A carboxy-terminal beta-hairpin and alpha-helix pack against switch II. The Phe-X-His-X2-His portion of the CRIB motif and the alpha-helix appear to mediate sensitivity to the nucleotide switch through contacts to residues 36-40 of Cdc42. Discrimination between the Rho-family members is likely to be governed by GBD contacts to the switch I and alpha5 regions of the GTPases. Structural and biochemical data suggest that GBD-sequence divergence outside the CRIB motif may reflect additional regulatory interactions with functional domains that are specific to individual effectors.  相似文献   

2.
J P Derrick  D B Wigley 《Nature》1992,359(6397):752-754
Protein G is a cell-surface protein from Streptococcus which binds to IgG molecules from a wide range of species with an affinity comparable to that of antigen. The high affinity of protein G for the Fab portion of IgG poses a particular challenge in molecular recognition, given the variability of heavy chain subclass, light chain type and complementarity-determining regions. Here we report the crystal structure of a complex between a protein G domain and an immunoglobulin Fab fragment. An outer beta-strand in the protein G domain forms an antiparallel interaction with the last beta-strand in the constant heavy chain domain of the immunoglobulin, thus extending the beta-sheet into the protein G. The interaction between secondary structural elements in Fab and protein G provides an ingenious solution to the problem of maintaining a high affinity for many different IgG molecules. The structure also contrasts with Fab-antigen complexes, in which all contacts with antigen are mediated by the variable regions of the antibody, and to our knowledge provides the first details of interaction of the constant regions of Fab with another protein.  相似文献   

3.
Structure of importin-beta bound to the IBB domain of importin-alpha.   总被引:15,自引:0,他引:15  
G Cingolani  C Petosa  K Weis  C W Müller 《Nature》1999,399(6733):221-229
Cytosolic proteins bearing a classical nuclear localization signal enter the nucleus bound to a heterodimer of importin-alpha and importin-beta (also called karyopherin-alpha and -beta). The formation of this heterodimer involves the importin-beta-binding (IBB) domain of importin-alpha, a highly basic amino-terminal region of roughly 40 amino-acid residues. Here we report the crystal structure of human importin-beta bound to the IBB domain of importin-alpha, determined at 2.5 A and 2.3 A resolution in two crystal forms. Importin-beta consists of 19 tandemly repeated HEAT motifs and wraps intimately around the IBB domain. The association involves two separate regions of importin-beta, recognizing structurally distinct parts of the IBB domain: an amino-terminal extended moiety and a carboxy-terminal helix. The structure indicates that significant conformational changes occur when importin-beta binds or releases the IBB domain domain and suggests how dissociation of the importin-alpha/beta heterodimer may be achieved upon nuclear entry.  相似文献   

4.
Y Fu  J E Galán 《Nature》1999,401(6750):293-297
An essential feature of the bacterial pathogen Salmonella spp. is its ability to enter cells that are normally non-phagocytic, such as those of the intestinal epithelium. The bacterium achieves entry by delivering effector proteins into the host-cell cytosol by means of a specialized protein-secretion system (termed type III), which causes reorganization of the cell's actin cytoskeleton and ruffling of its membrane. One of the bacterial effectors that stimulates these cellular responses is SopE, which acts as a guanyl-nucleotide-exchange factor on Rho GTPase proteins such as Cdc42 and Rac. As the actin-cytoskeleton reorganization induced by Salmonella is reversible and short-lived, infected cells regain their normal architecture after bacterial internalization. We show here that the S. Typhimurium effector protein SptP, which is delivered to the host-cell cytosol by the type-III secretion system, is directly responsible for the reversal of the actin cytoskeletal changes induced by the bacterium. SptP exerts this function by acting as a GTPase-activating protein (GAP) for Rac-1 and Cdc42.  相似文献   

5.
6.
Wu WJ  Erickson JW  Lin R  Cerione RA 《Nature》2000,405(6788):800-804
The Ras-related GTP-binding protein Cdc42 is implicated in a variety of biological activities including the establishment of cell polarity in yeast, the regulation of cell morphology, motility and cell-cycle progression in mammalian cells and the induction of malignant transformation. We identified a Cdc42 mutant (Cdc42F28L) which binds GTP in the absence of a guanine nucleotide exchange factor, but still hydrolyses GTP with a turnover number identical to that for wild-type Cdc42. Expression of this mutant in NIH 3T3 fibroblasts causes cellular transformation, mimicking many of the characteristics of cells transformed by the Dbl oncoprotein, a known guanine nucleotide exchange factor for Cdc42. Here we searched for new Cdc42 targets in an effort to understand how Cdc42 mediates cellular transformation. We identified the gamma-subunit of the coatomer complex (gammaCOP) as a specific binding partner for activated Cdc42. The binding of Cdc42 to gammaCOP is essential for a transforming signal distinct from those elicited by Ras.  相似文献   

7.
Sung BJ  Hwang KY  Jeon YH  Lee JI  Heo YS  Kim JH  Moon J  Yoon JM  Hyun YL  Kim E  Eum SJ  Park SY  Lee JO  Lee TG  Ro S  Cho JM 《Nature》2003,425(6953):98-102
Phosphodiesterases (PDEs) are a superfamily of enzymes that degrade the intracellular second messengers cyclic AMP and cyclic GMP. As essential regulators of cyclic nucleotide signalling with diverse physiological functions, PDEs are drug targets for the treatment of various diseases, including heart failure, depression, asthma, inflammation and erectile dysfunction. Of the 12 PDE gene families, cGMP-specific PDE5 carries out the principal cGMP-hydrolysing activity in human corpus cavernosum tissue. It is well known as the target of sildenafil citrate (Viagra) and other similar drugs for the treatment of erectile dysfunction. Despite the pressing need to develop selective PDE inhibitors as therapeutic drugs, only the cAMP-specific PDE4 structures are currently available. Here we present the three-dimensional structures of the catalytic domain (residues 537-860) of human PDE5 complexed with the three drug molecules sildenafil, tadalafil (Cialis) and vardenafil (Levitra). These structures will provide opportunities to design potent and selective PDE inhibitors with improved pharmacological profiles.  相似文献   

8.
Mitra K  Schaffitzel C  Shaikh T  Tama F  Jenni S  Brooks CL  Ban N  Frank J 《Nature》2005,438(7066):318-324
Secreted and membrane proteins are translocated across or into cell membranes through a protein-conducting channel (PCC). Here we present a cryo-electron microscopy reconstruction of the Escherichia coli PCC, SecYEG, complexed with the ribosome and a nascent chain containing a signal anchor. This reconstruction shows a messenger RNA, three transfer RNAs, the nascent chain, and detailed features of both a translocating PCC and a second, non-translocating PCC bound to mRNA hairpins. The translocating PCC forms connections with ribosomal RNA hairpins on two sides and ribosomal proteins at the back, leaving a frontal opening. Normal mode-based flexible fitting of the archaeal SecYEbeta structure into the PCC electron microscopy densities favours a front-to-front arrangement of two SecYEG complexes in the PCC, and supports channel formation by the opening of two linked SecY halves during polypeptide translocation. On the basis of our observation in the translocating PCC of two segregated pores with different degrees of access to bulk lipid, we propose a model for co-translational protein translocation.  相似文献   

9.
10.
Kuper J  Llamas A  Hecht HJ  Mendel RR  Schwarz G 《Nature》2004,430(7001):803-806
The molybdenum cofactor is part of the active site of all molybdenum-dependent enzymes, except nitrogenase. The molybdenum cofactor consists of molybdopterin, a phosphorylated pyranopterin, with an ene-dithiolate coordinating molybdenum. The same pyranopterin-based cofactor is involved in metal coordination of the homologous tungsten-containing enzymes found in archea. The molybdenum cofactor is synthesized by a highly conserved biosynthetic pathway. In plants, the multidomain protein Cnx1 catalyses the insertion of molybdenum into molybdopterin. The Cnx1 G domain (Cnx1G), whose crystal structure has been determined in its apo form, binds molybdopterin with high affinity and participates in the catalysis of molybdenum insertion. Here we present two high-resolution crystal structures of Cnx1G in complex with molybdopterin and with adenylated molybdopterin (molybdopterin-AMP), a mechanistically important intermediate. Molybdopterin-AMP is the reaction product of Cnx1G and is subsequently processed in a magnesium-dependent reaction by the amino-terminal E domain of Cnx1 to yield active molybdenum cofactor. The unexpected identification of copper bound to the molybdopterin dithiolate sulphurs in both structures, coupled with the observed copper inhibition of Cnx1G activity, provides a molecular link between molybdenum and copper metabolism.  相似文献   

11.
The protein Ran is a small GTP-binding protein that binds to two types of effector inside the cell: Ran-binding proteins, which have a role in terminating export processes from the nucleus to the cytoplasm, and importin-beta-like molecules that bind cargo proteins during nuclear transport. The Ran-binding domain is a conserved sequence motif found in several proteins that participate in these transport processes. The Ran-binding protein RanBP2 contains four of these domains and constitutes a large part of the cytoplasmic fibrils that extend from the nuclear-pore complex. The structure of Ran bound to a non-hydrolysable GTP analogue (Ran x GppNHp) in complex with the first Ran-binding domain (RanBD1) of human RanBP2 reveals not only that RanBD1 has a pleckstrin-homology domain fold, but also that the switch-I region of Ran x GppNHp resembles the canonical Ras GppNHp structure and that the carboxy terminus of Ran is wrapped around RanBD1, contacting a basic patch on RanBD1 through its acidic end. This molecular 'embrace' enables RanBDs to sequester the Ran carboxy terminus, triggering the dissociation of Ran x GTP from importin-beta-related transport factors and facilitating GTP hydrolysis by the GTPase-activating protein ranGAP. Such a mechanism represents a new type of switch mechanism and regulatory protein-protein interaction for a Ras-related protein.  相似文献   

12.
The prokaryotic signal recognition particle (SRP) targets membrane proteins into the inner membrane. It binds translating ribosomes and screens the emerging nascent chain for a hydrophobic signal sequence, such as the transmembrane helix of inner membrane proteins. If such a sequence emerges, the SRP binds tightly, allowing the SRP receptor to lock on. This assembly delivers the ribosome-nascent chain complex to the protein translocation machinery in the membrane. Using cryo-electron microscopy and single-particle reconstruction, we obtained a 16 A structure of the Escherichia coli SRP in complex with a translating E. coli ribosome containing a nascent chain with a transmembrane helix anchor. We also obtained structural information on the SRP bound to an empty E. coli ribosome. The latter might share characteristics with a scanning SRP complex, whereas the former represents the next step: the targeting complex ready for receptor binding. High-resolution structures of the bacterial ribosome and of the bacterial SRP components are available, and their fitting explains our electron microscopic density. The structures reveal the regions that are involved in complex formation, provide insight into the conformation of the SRP on the ribosome and indicate the conformational changes that accompany high-affinity SRP binding to ribosome nascent chain complexes upon recognition of the signal sequence.  相似文献   

13.
Riedl SJ  Li W  Chao Y  Schwarzenbacher R  Shi Y 《Nature》2005,434(7035):926-933
Apoptosis is executed by caspases, which undergo proteolytic activation in response to cell death stimuli. The apoptotic protease-activating factor 1 (Apaf-1) controls caspase activation downstream of mitochondria. During apoptosis, Apaf-1 binds to cytochrome c and in the presence of ATP/dATP forms an apoptosome, leading to the recruitment and activation of the initiator caspase, caspase-9 (ref. 2). The mechanisms underlying Apaf-1 function are largely unknown. Here we report the 2.2-A crystal structure of an ADP-bound, WD40-deleted Apaf-1, which reveals the molecular mechanism by which Apaf-1 exists in an inactive state before ATP binding. The amino-terminal caspase recruitment domain packs against a three-layered alpha/beta fold, a short helical motif and a winged-helix domain, resulting in the burial of the caspase-9-binding interface. The deeply buried ADP molecule serves as an organizing centre to strengthen interactions between these four adjoining domains, thus locking Apaf-1 in an inactive conformation. Apaf-1 binds to and hydrolyses ATP/dATP and their analogues. The binding and hydrolysis of nucleotides seem to drive conformational changes that are essential for the formation of the apoptosome and the activation of caspase-9.  相似文献   

14.
Chen KM  Harjes E  Gross PJ  Fahmy A  Lu Y  Shindo K  Harris RS  Matsuo H 《Nature》2008,452(7183):116-119
The human APOBEC3G (apolipoprotein B messenger-RNA-editing enzyme, catalytic polypeptide-like 3G) protein is a single-strand DNA deaminase that inhibits the replication of human immunodeficiency virus-1 (HIV-1), other retroviruses and retrotransposons. APOBEC3G anti-viral activity is circumvented by most retroelements, such as through degradation by HIV-1 Vif. APOBEC3G is a member of a family of polynucleotide cytosine deaminases, several of which also target distinct physiological substrates. For instance, APOBEC1 edits APOB mRNA and AID deaminates antibody gene DNA. Although structures of other family members exist, none of these proteins has elicited polynucleotide cytosine deaminase or anti-viral activity. Here we report a solution structure of the human APOBEC3G catalytic domain. Five alpha-helices, including two that form the zinc-coordinating active site, are arranged over a hydrophobic platform consisting of five beta-strands. NMR DNA titration experiments, computational modelling, phylogenetic conservation and Escherichia coli-based activity assays combine to suggest a DNA-binding model in which a brim of positively charged residues positions the target cytosine for catalysis. The structure of the APOBEC3G catalytic domain will help us to understand functions of other family members and interactions that occur with pathogenic proteins such as HIV-1 Vif.  相似文献   

15.
16.
A novel G protein alpha-subunit (alpha-gustducin) has been identified and cloned from taste tissue. alpha-Gustducin messenger RNA is expressed in taste buds of all taste papillae (circumvallate, foliate and fungiform); it is not expressed in non-sensory portions of the tongue, nor is it expressed in the other tissues examined. alpha-Gustducin most closely resembles the transducins (the rod and cone photoreceptor G proteins), suggesting that gustducin's role in taste transduction is analogous to that of transducin in light transduction.  相似文献   

17.
18.
19.
20.
The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号