首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
河道交汇区涡旋结构研究   总被引:1,自引:1,他引:0  
利用粒子图像测速技术(PIV)实现了基于涡量的剪切层和分离区位置的精确确定,同时对汇流区水平面内的涡旋结构进行系统观测和分析。研究发现:剪切层和分离区近水面和近底面水深平面的涡旋密度大,水深中部的涡旋密度小;支流流量增大的情况下涡旋密度均增大。槽底壁面湍流是近底面涡旋密度大的主要原因。剪切层由水流剪切产生的剪切涡以小旋转强度涡旋为主,分离区由水流分离产生的分离涡以中等及小旋转强度涡旋为主。  相似文献   

2.
基于飞行试验的应用特点,提出了进气道旋流畸变测试方法和评定指标,以某发动机试车台为试验平台,搭建了旋流模拟与测量系统,进行了整体涡旋流、对涡旋流、局部涡旋流的模拟与测量试验,验证了旋流模拟、测量方法与评价指标的有效性.建立三维数值模型进行了相应工况数值计算,并将试验结果和数值计算结果进行分析对比,发现结果吻合良好,误差较小.研究结果表明:研制的旋流发生器可模拟出不同涡结构和强度的旋流畸变,其中整体涡强度可达17°;提出的旋流测量方法行之有效且精度较高,旋流评定指标合理可行,能够较为直观地反映出旋流流场的强弱和结构,可应用于飞行试验.研究结果为后续型号进气道旋流畸变试飞提供了技术储备.  相似文献   

3.
通过与已发表的数据相比对,对大涡模拟方法的有效性进行验证.采用该数值方法对高雷诺数下25°后倾角Ahmed类车体背部斜面及尾部垂直面处尾迹区的流动进行解算.通过对背部斜面处分离泡、背部斜面侧边"C柱"处卷起的拖曳涡对及尾部垂直面处回流区流场信息的采用及相关频谱特性分析,研究并明确了尾迹区起主导作用的大尺度相干结构及运动的非定常特性.在流动的不同区域,类车体尾迹区流动的非定常特性不尽相同,主要体现为背部斜面分离泡的拍击振动具有绝对不稳定性特征,由KelvinHelmholtz(KH)不稳定性诱发的大尺度相干结构具有对流不稳定性特征;两侧"C柱"拖曳涡对在背部斜面上与展向涡相互耦合,具有较好的对称性;拖曳涡对在垂直面处回流区内与该区展向涡相互混掺,但无耦合作用且不具有对称性;垂直面处回流区内上、下侧剪切层卷起的展向涡以类似卡门涡街形式交替产生并脱落;高雷诺数时,整个尾迹区流动的特征频率趋于一致.  相似文献   

4.
为研究汽车行驶过程中减振器弹簧压并状态下翼子板内流场特性的变化,将该状态下的减振器简化为三维变截面圆柱模型,并建立变截面圆柱绕流三维流场模型,利用Transition SST四方程转捩模型模拟低、中、高3种车速对大、小圆柱绕流涡旋特性的影响.结果表明:绕流后尾涡的大小、形态、上升角均受圆柱直径、雷诺数及边界条件的影响,在变截面处验证“下洗”运动对N区边缘涡生长的直接作用及对L区涡旋分布的干扰作用;3种流速下适合绕流涡旋振动压电能量回收的最优夹角分别为±10°,±15°,±20°;在有界的高雷诺数流场下对变截面圆柱绕流涡旋重新分区,发现新的涡旋连接方式.  相似文献   

5.
采用大涡模拟方法(LES)模拟了悉尼旋流燃烧器的中等旋流数算例(N29S054和N29S045)的冷态流场,研究了涡旋破碎泡(下游二次回流区)的不稳定模式.LES结果得到的统计矩总体上与实验值符合得较好.研究发现:涡旋破碎泡没有螺旋形结构,其周围也没有出现螺旋形状的进动涡核,表明涡旋破碎泡没有典型的进动特征;瞬时速度分布显示了涡旋破碎泡存在着周期性的收缩/崩塌与膨胀的现象;功率谱的特征峰证实了涡旋破碎泡存在着周期性运动.  相似文献   

6.
后台阶流动是一种经典的分离流动问题,为了更深入地分析后台阶流动结构,探讨台阶流动水力特性,基于FLUENT软件,采用三维k-ε紊流模型对大范围雷诺数50Re50 000情况下的后台阶水流流动进行了数值模拟,将其结果与PIV试验所测结果相结合,分析后台阶流动的回流区特性和回流区长度变化规律,详细分析了中心剖面的断面速度、压力、紊动能和涡量等水力特性的分布情况.结果表明:模拟值与试验值吻合较好,两者都存在稳定的回流区,回流区长度变化趋势相一致,模型结果可靠;水力特性均受回流区的影响较大,尤其在分离点处压力达最小值,涡量也在此处沿回流区边缘扩散,而在回流中心处速度较小,紊动能则较大.  相似文献   

7.
采用尺度自适应模拟(SAS)方法研究了来流马赫数Ma为0.71、雷诺数Re为4×10~5的方柱跨声速绕流,并对分离剪切层和尾迹特性进行了深入分析.为了验证SAS方法的可靠性,将SAS结果与已有数值和实验结果进行了对比.在当前的跨声速流场中,剪切层中的对流马赫数约为0.6,这意味着Kelvin-Helmholtz不稳定性主导剪切层的初始阶段演化.在剪切层的初始阶段,可以看出扰动涡沿展向呈现滚筒状结构.剪切层外侧附近和方柱的回流区均出现倍频现象,这与剪切层中存在明显的涡合并有关.压力场的本征正交分解表明,方柱跨声速流场中的主导流动模态为反对称模态,这与尾迹中的涡脱落现象和剪切层引起的压缩波传播有关.  相似文献   

8.
两种亚网格湍流模型的旋流扩散火焰大涡模拟   总被引:1,自引:0,他引:1  
为研究旋流火焰结构,采用二阶矩亚网格(SOM-SGS)燃烧模型及Smagorinsky-Lilly和K方程亚网格湍流模型,对美国Sandia国家实验室测量的旋流火焰进行了大涡模拟,得到了与燃烧场速度、温度和温度脉动实测值相吻合的模拟结果。预报的瞬时温度分布云图与实际火焰的形状很相似。K方程亚网格湍流模型预报的瞬时温度分布比Smagorinsky-Lilly模型的预报结果更接近实际。燃烧火焰基本上位于回流区所在的位置,火焰在回流区被稳定。  相似文献   

9.
为研究旋流火焰结构,采用二阶矩亚网格(SOM-SGS)燃烧模型及Smagorinsky-Lilly和K方程亚网格湍流模型,对美国Sandia国家实验室测量的旋流火焰进行了大涡模拟,得到了与燃烧场速度、温度和温度脉动实测值相吻合的模拟结果。预报的瞬时温度分布云图与实际火焰的形状很相似。K方程亚网格湍流模型预报的瞬时温度分布比Smagorinsky-Lilly模型的预报结果更接近实际。燃烧火焰基本上位于回流区所在的位置,火焰在回流区被稳定。  相似文献   

10.
采用高精度大涡模拟算法,对低雷诺数下的孤立翼型分离流动问题进行研究,计算了雷诺数为55000、马赫数0.2、来流5°攻角下的NACA-0025翼型,生成数值数据库,从时均流场、瞬态流场、频谱和高阶统计量等多个角度进行分析.研究结果表明:大涡模拟方法能够很好的描述低雷诺数翼型分离流动,其瞬态流场图画与实验结果吻合的很好;翼型上表面出现大尺度的开放式分离区,在Kelvin-Helmholtz(K-H)不稳定性作用下,自由剪切层失稳卷起展向涡,展向涡二次失稳发生旋涡配对现象;分离区流场的演化受大尺度涡结构控制,流场中高阶统计量的分布也与涡结构密切相关.  相似文献   

11.
为了开发基于熵格子玻尔兹曼方法的通用计算流体动力学求解器,建立了熵格子玻尔兹曼方法的大涡模拟标准Smagorinsky亚格子尺度湍流模型的计算模型,探究了其进行高雷诺数湍流模拟的有效性,并且尝试展开了基于熵格子玻尔兹曼方法大涡模拟亚格子尺度模型的近壁面研究.得到结论:熵格子玻尔兹曼方法的大涡模拟能够有效进行高雷诺数湍流的数值模拟计算;近壁面处理的Catalano方法对壁面处流场速度的计算结果优于Van Driest方法,而Van Driest方法的优越性表现为模拟计算方法的一致性.  相似文献   

12.
为了研究涡旋射流控制流动分离的物理机理,基于大涡模拟方法对涡旋射流控制下的矩形扩压器流场和射流流向涡结构的生成、发展等动力学演化过程进行了数值研究.结果表明:射流产生的流向涡将主流高动量气流带入分离区,增加了边界层内气流流动方向的动量,使流动分离得到了抑制.射流流场的涡结构主要由射流剪切层涡、马蹄涡、尾涡组成,由于速度梯度大小的变化,使得射流剪切层涡系的结构随着时间推移从涡卷演化为涡环.对于脉冲射流,在低频脉冲下,射流产生的流向涡呈涡卷结构,流动控制效果明显.在高频脉冲下,射流剪切层涡演变成间歇涡环结构,流动控制效果减弱.通过对比脉冲频率和占空比对流动控制的影响发现,占空比为0.5、频率为20Hz的脉冲射流具有较好的流动控制效果.  相似文献   

13.
采用数值计算的方法对3/4开口回流式汽车风洞喷口处的涡流发生器进行了研究.对比研究了三种不同片数的涡流发生器对流场品质的影响.首先采用定常雷诺时均纳维斯托克斯方程求解了流场的定常特性,接着采用大涡模拟(LES)方法对流场的非定常特性进行了研究.并就两种计算方法给予了相应的试验验证.对比计算结果得到涡流发生器可以在一定程度上提高流场均与性,尤其是三片式涡流发生器的工况能较好地拓宽风洞测试区的高流速区域的范围,降低测试区的静压梯度,减小试验段内的湍流度和剪切层内的湍流度,延长测试段内低湍流区的长度,分散流场内的脉动能量,降低低频颤振敏感频率区的能量聚集.  相似文献   

14.
改进的K-ω模型在亚音速漩涡流动中的应用   总被引:1,自引:0,他引:1  
王熙  高正红 《科学技术与工程》2012,12(12):2879-2883
基于非结构网格,采用经典的wilcox k-ω模型和其改进的kω-Pω模型,建立了用于模拟大攻角旋涡流动的计算方法.以尖前缘的65°三角翼为例,模拟了旋涡的产生、发展、破裂过程,验证了wilcox k-ω模型和kω-Pω模型在典型的亚音速计算状态下对复杂涡系干扰的模拟能力.通过对多种计算的流场与气动力详细结果的比较分析,就两种湍流模型对大攻角复杂旋涡流动的预测能力和敏感性等进行了评估.结果表明:kω-Pω模型通过r值区分剪切层和涡核区域,从而对涡核区域的涡黏性进行修正.对最后的模拟结果有一定的修正作用,可以作为湍流模型修正的一个方向.RANS方法在预测涡破裂点位置和二次涡的强度及位置方面仍存在很大的缺陷.  相似文献   

15.
环空管道后台阶突扩流动是空气正循环钻井过程中十分重要的关键部分,直接决定了钻探岩屑是否能够顺利上返地面.该模型中对再附着过程的演变进行了大涡模拟(LES).指出在层流状态下主回流区长度随雷诺数Re的增加而增加;过渡流状态时出现内壁二次回流区,角部二次回流区和外壁三次回流区;湍流状态时,随着角部二次回流和外壁三次回流的消失,外管内壁和内管外壁处出现大尺度涡;得出了台阶上游和下游较远处流场层流时为抛物线分布,湍流时近似为对数分布.在此基础上进一步研究了湍流情况下流场中大尺度涡结构的瞬时发展和演变过程,以期实现对湍流的有效控制,并为进一步研究气体钻井环空管道内颗粒和大涡的相互作用规律奠定基础.  相似文献   

16.
小尺度新月形沙丘背风侧流场特性的大涡模拟分析   总被引:3,自引:0,他引:3  
为了准确获得新月形沙丘背风侧湍流流场流动特性,采用基于Smagorinsky的亚格子尺度涡黏模型的大涡模拟(LES)方法,对简化了的实验缩比小尺度沙丘模型绕流气相流场进行了数值研究,模拟了相同来流风速、不同沙丘迎风坡度和高度下背风侧风场的湍流流动模式,获得了背风侧区域地表面摩擦系数分布,比较了回流区长度和湍流强度分布.模拟结果表明:LES方法能较好地揭示背风侧湍流流场特性;流场重附距离随沙丘迎风坡度和高度的增加而增大;背风侧回流区内湍流强度总体上比回流区外大,回流区内沙丘坡脚位置及重附点位置处湍流强度最大值出现在贴近地表附近,随沙丘高度的增加而增大;回流区中部湍流强度最大值出现在回流区顶部,随沙丘高度的增加先增大后基本不变.  相似文献   

17.
以优化方柱气动外形为目的,采用大涡模拟方法,在雷诺数为22 000时,研究了采用不同角、边平面形态及其组合(包括尖角、圆角、直边、凸边和凹边等组合)的类方柱的气动性能和流场特性,重点分析了凸边圆角柱的气动性能随边部曲率半径的变化规律,并通过分析流场结构揭示了平面形态修正对类方柱气动性能影响的作用机理.研究发现,角、边形状修正可显著改变绕流场结构,最终影响类方柱的气动性能:尖角柱体圆角化、直边柱体凸边化能显著降低气动力、负压区强度和涡脱强度,并伴随斯托罗哈数上升;而直边柱体凹边化后气动性能变化趋势相反;不同角边形状的组合中,凸边和圆角的组合可导致分离剪切层更紧贴柱体壁面,上、下侧回流区范围变小,尾流回流区长度增大,涡脱强度减弱,气动力下降.对凸边圆角柱的进一步研究表明,柱体的气动性能对边部曲率半径非常敏感;并存在一最优曲率半径,此时凸边圆角柱的平均和脉动气动力最小,斯托罗哈数最大,尾流长度最长,涡脱强度最低.  相似文献   

18.
采用大涡模拟(LES)方法对Taylor-Couette涡流场进行瞬态数值模拟,研究了波状涡流场中不同旋转雷诺数下环隙子午面上涡流场特征随时间的变化情况,分析了波状涡流场的周期性变化规律.结果表明:Taylor-Couette波状涡流场内的涡旋大小、形态及涡心位置存在周期性变化规律,相邻涡旋的形态与特征呈现相反的变化趋势;涡旋、涡核的变化周期几乎完全相同,当转速为20 r/min时,涡旋和涡核的周期变化时间分别为6.80 s和6.83 s,当转速为40 r/min时,涡旋和涡核的周期变化时间分别为1.49 s和1.50 s,但涡核的变化趋势在周期变化过程中处于主导地位;随着旋转雷诺数的增大,波状涡的变化周期逐渐减小,说明周期的数值变化一定程度上可以反映并衡量Taylor-Couette涡流场形态的转变过程.  相似文献   

19.
采用大涡模拟的方法对雷诺数为7.5×105并排双方柱绕流流场进行了数值模拟,并对所采用的模拟方法进行了实验验证.利用有限体积法和SIMPLE算法计算程式,对双方柱三维物理模型求解不可压缩的N-S方程.计算得到了方柱绕流的速度场和涡量场以及不同时刻的速度分量分布情况.对方柱后速度场、涡旋形成、脱落以及波动性等问题进行了分析,结果符合物理学规律.  相似文献   

20.
基于非结构网格,采用经典的wilcox k-ω模型和其改进的kω-Pω模型,建立了用于模拟大攻角旋涡流动的计算方法。以尖前缘的65?三角翼为例,模拟了旋涡的产生、发展、破裂过程,验证了wilcox k-ω模型和kω-Pω模型在典型的亚音速计算状态下对复杂涡系干扰的模拟能力。通过对多种计算的流场与气动力详细结果的比较分析,就两种湍流模型对大攻角复杂旋涡流动的预测能力和敏感性等进行了评估。结果表明:kω-Pω模型通过r值区分剪切层和涡核区域,从而对涡核区域的涡粘性进行修正,对最后的模拟结果有一定的修正作用,可以作为湍流模型修正的一个方向;RANS方法在预测涡破裂点位置和二次涡的强度及位置方面仍存在很大的缺陷。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号