首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Our Solar System formed approximately 4.6 billion years ago from the collapse of a dense core inside an interstellar molecular cloud. The subsequent formation of solid bodies took place rapidly. The period of &<10 million years over which planetesimals were assembled can be investigated through the study of meteorites. Although some planetesimals differentiated and formed metallic cores like the larger terrestrial planets, the parent bodies of undifferentiated chondritic meteorites experienced comparatively mild thermal metamorphism that was insufficient to separate metal from silicate. There is debate about the nature of the heat source as well as the structure and cooling history of the parent bodies. Here we report a study of 244Pu fission-track and 40Ar-39Ar thermochronologies of unshocked H chondrites, which are presumed to have a common, single, parent body. We show that, after fast accretion, an internal heating source (most probably 26Al decay) resulted in a layered parent body that cooled relatively undisturbed: rocks in the outer shells reached lower maximum metamorphic temperatures and cooled faster than the more recrystallized and chemically equilibrated rocks from the centre, which needed approximately 160 Myr to reach 390K.  相似文献   

2.
Determining the chronology for the assembly of planetary bodies in the early Solar System is essential for a complete understanding of star- and planet-formation processes. Various radionuclide chronometers (applied to meteorites) have been used to determine that basaltic lava flows on the surface of the asteroid Vesta formed within 3 million years (3 Myr) of the origin of the Solar System. Such rapid formation is broadly consistent with astronomical observations of young stellar objects, which suggest that formation of planetary systems occurs within a few million years after star formation. Some hafnium-tungsten isotope data, however, require that Vesta formed later (approximately 16 Myr after the formation of the Solar System) and that the formation of the terrestrial planets took a much longer time (62(-14)(+4504) Myr). Here we report measurements of tungsten isotope compositions and hafnium-tungsten ratios of several meteorites. Our measurements indicate that, contrary to previous results, the bulk of metal-silicate separation in the Solar System was completed within <30 Myr. These results are completely consistent with other evidence for rapid planetary formation, and are also in agreement with dynamic accretion models that predict a relatively short time (approximately 10 Myr) for the main growth stage of terrestrial planet formation.  相似文献   

3.
Iron meteorites are core fragments from differentiated and subsequently disrupted planetesimals. The parent bodies are usually assumed to have formed in the main asteroid belt, which is the source of most meteorites. Observational evidence, however, does not indicate that differentiated bodies or their fragments were ever common there. This view is also difficult to reconcile with the fact that the parent bodies of iron meteorites were as small as 20 km in diameter and that they formed 1-2 Myr earlier than the parent bodies of the ordinary chondrites. Here we show that the iron-meteorite parent bodies most probably formed in the terrestrial planet region. Fast accretion times there allowed small planetesimals to melt early in Solar System history by the decay of short-lived radionuclides (such as 26Al, 60Fe). The protoplanets emerging from this population not only induced collisional evolution among the remaining planetesimals but also scattered some of the survivors into the main belt, where they stayed for billions of years before escaping via a combination of collisions, Yarkovsky thermal forces, and resonances. We predict that some asteroids are main-belt interlopers (such as (4) Vesta). A select few may even be remnants of the long-lost precursor material that formed the Earth.  相似文献   

4.
Kleine T  Münker C  Mezger K  Palme H 《Nature》2002,418(6901):952-955
The timescales and mechanisms for the formation and chemical differentiation of the planets can be quantified using the radioactive decay of short-lived isotopes. Of these, the (182)Hf-to-(182)W decay is ideally suited for dating core formation in planetary bodies. In an earlier study, the W isotope composition of the Earth's mantle was used to infer that core formation was late (> or = 60 million years after the beginning of the Solar System) and that accretion was a protracted process. The correct interpretation of Hf-W data depends, however, on accurate knowledge of the initial abundance of (182)Hf in the Solar System and the W isotope composition of chondritic meteorites. Here we report Hf-W data for carbonaceous and H chondrite meteorites that lead to timescales of accretion and core formation significantly different from those calculated previously. The revised ages for Vesta, Mars and Earth indicate rapid accretion, and show that the timescale for core formation decreases with decreasing size of the planet. We conclude that core formation in the terrestrial planets and the formation of the Moon must have occurred during the first approximately 30 million years of the life of the Solar System.  相似文献   

5.
Dauphas N  Pourmand A 《Nature》2011,473(7348):489-492
Terrestrial planets are thought to have formed through collisions between large planetary embryos of diameter ~1,000-5,000?km. For Earth, the last of these collisions involved an impact by a Mars-size embryo that formed the Moon 50-150?million years (Myr) after the birth of the Solar System. Although model simulations of the growth of terrestrial planets can reproduce the mass and dynamical parameters of the Earth and Venus, they fall short of explaining the small size of Mars. One possibility is that Mars was a planetary embryo that escaped collision and merging with other embryos. To assess this idea, it is crucial to know Mars' accretion timescale, which can be investigated using the (182)Hf-(182)W decay system in shergottite-nakhlite-chassignite meteorites. Nevertheless, this timescale remains poorly constrained owing to a large uncertainty associated with the Hf/W ratio of the Martian mantle and as a result, contradicting timescales have been reported that range between 0 and 15?Myr (refs 6-10). Here we show that Mars accreted very rapidly and reached about half of its present size in only 1.8(+0.9)(-1.0) Myr or less, which is consistent with a stranded planetary embryo origin. We have found a well-defined correlation between the Th/Hf and (176)Hf/(177)Hf ratios in chondrites that reflects remobilization of Lu and Th during parent-body processes. Using this relationship, we estimate the Hf/W ratio in Mars' mantle to be 3.51?±?0.45. This value is much more precise than previous estimates, which ranged between 2.6 and 5.0 (ref. 6), and lifts the large uncertainty that plagued previous estimates of the age of Mars. Our results also demonstrate that Mars grew before dissipation of the nebular gas when ~100-km planetesimals, such as the parent bodies of chondrites, were still being formed. Mars' accretion occurred early enough to allow establishment of a magma ocean powered by decay of (26)Al.  相似文献   

6.
Baker J  Bizzarro M  Wittig N  Connelly J  Haack H 《Nature》2005,436(7054):1127-1131
Long- and short-lived radioactive isotopes and their daughter products in meteorites are chronometers that can test models for Solar System formation. Differentiated meteorites come from parent bodies that were once molten and separated into metal cores and silicate mantles. Mineral ages for these meteorites, however, are typically younger than age constraints for planetesimal differentiation. Such young ages indicate that the energy required to melt their parent bodies could not have come from the most likely heat source-radioactive decay of short-lived nuclides ((26)Al and (60)Fe) injected from a nearby supernova-because these would have largely decayed by the time of melting. Here we report an age of 4.5662 +/- 0.0001 billion years (based on Pb-Pb dating) for basaltic angrites, which is only 1 Myr younger than the currently accepted minimum age of the Solar System and corresponds to a time when (26)Al and (60)Fe decay could have triggered planetesimal melting. Small (26)Mg excesses in bulk angrite samples confirm that (26)Al decay contributed to the melting of their parent body. These results indicate that the accretion of differentiated planetesimals pre-dated that of undifferentiated planetesimals, and reveals the minimum Solar System age to be 4.5695 +/- 0.0002 billion years.  相似文献   

7.
Core formation in planetesimals triggered by permeable flow   总被引:1,自引:0,他引:1  
Yoshino T  Walter MJ  Katsura T 《Nature》2003,422(6928):154-157
The tungsten isotope composition of meteorites indicates that core formation in planetesimals occurred within a few million years of Solar System formation. But core formation requires a mechanism for segregating metal, and the 'wetting' properties of molten iron alloy in an olivine-rich matrix is thought to preclude segregation by permeable flow unless the silicate itself is partially molten. Excess liquid metal over a percolation threshold, however, can potentially create permeability in a solid matrix, thereby permitting segregation. Here we report the percolation threshold for molten iron-sulphur compounds of approximately 5 vol.% in solid olivine, based on electrical conductivity measurements made in situ at high pressure and temperature. We conclude that heating within planetesimals by decay of short-lived radionuclides can increase temperature sufficiently above the iron-sulphur melting point (approximately 1,000 degrees C) to trigger segregation of iron alloy by permeable flow within the short timeframe indicated by tungsten isotopes. We infer that planetesimals with radii greater than about 30 km and larger planetary embryos are expected to have formed cores very early, and these objects would have contained much of the mass in the terrestrial region of the protoplanetary nebula. The Earth and other terrestrial planets are likely therefore to have formed by accretion of previously differentiated planetesimals, and Earth's core may accordingly be viewed as a blended composite of pre-formed cores.  相似文献   

8.
Greenwood RC  Franchi IA  Jambon A  Buchanan PC 《Nature》2005,435(7044):916-918
Immediately following the formation of the Solar System, small planetary bodies accreted, some of which melted to produce igneous rocks. Over a longer timescale (15-33 Myr), the inner planets grew by incorporation of these smaller objects through collisions. Processes operating on such asteroids strongly influenced the final composition of these planets, including Earth. Currently there is little agreement about the nature of asteroidal igneous activity: proposals range from small-scale melting, to near total fusion and the formation of deep magma oceans. Here we report a study of oxygen isotopes in two basaltic meteorite suites, the HEDs (howardites, eucrites and diogenites, which are thought to sample the asteroid 4 Vesta) and the angrites (from an unidentified asteroidal source). Our results demonstrate that these meteorite suites formed during early, global-scale melting (> or = 50 per cent) events. We show that magma oceans were present on all the differentiated Solar System bodies so far sampled. Magma oceans produced compositionally layered planetesimals; the modification of such bodies before incorporation into larger objects can explain some anomalous planetary features, such as Earth's high Mg/Si ratio.  相似文献   

9.
Beck P  Gillet P  El Goresy A  Mostefaoui S 《Nature》2005,435(7045):1071-1074
The accretion of the terrestrial planets from asteroid collisions and the delivery to the Earth of martian and lunar meteorites has been modelled extensively. Meteorites that have experienced shock waves from such collisions can potentially be used to reveal the accretion process at different stages of evolution within the Solar System. Here we have determined the peak pressure experienced and the duration of impact in a chondrite and a martian meteorite, and have combined the data with impact scaling laws to infer the sizes of the impactors and the associated craters on the meteorite parent bodies. The duration of shock events is inferred from trace element distributions between coexisting high-pressure minerals in the shear melt veins of the meteorites. The shock duration and the associated sizes of the impactor are found to be much greater in the chondrite (approximately 1 s and 5 km, respectively) than in the martian meteorite (approximately 10 ms and 100 m). The latter result compares well with numerical modelling studies of cratering on Mars, and we suggest that martian meteorites with similar, recent ejection ages (10(5) to 10(7) years ago) may have originated from the same few square kilometres on Mars.  相似文献   

10.
Bizzarro M  Baker JA  Haack H 《Nature》2004,431(7006):275-278
Primitive or undifferentiated meteorites (chondrites) date back to the origin of the Solar System, and thus preserve a record of the physical and chemical processes that occurred during the earliest evolution of the accretion disk surrounding the young Sun. The oldest Solar System materials present within these meteorites are millimetre- to centimetre-sized calcium-aluminium-rich inclusions (CAIs) and ferromagnesian silicate spherules (chondrules), which probably originated by thermal processing of pre-existing nebula solids. Chondrules are currently believed to have formed approximately 2-3 million years (Myr) after CAIs (refs 5-10)--a timescale inconsistent with the dynamical lifespan of small particles in the early Solar System. Here, we report the presence of excess (26)Mg resulting from in situ decay of the short-lived (26)Al nuclide in CAIs and chondrules from the Allende meteorite. Six CAIs define an isochron corresponding to an initial (26)Al/(27)Al ratio of (5.25 +/- 0.10) x 10(-5), and individual model ages with uncertainties as low as +/- 30,000 years, suggesting that these objects possibly formed over a period as short as 50,000 years. In contrast, the chondrules record a range of initial (26)Al/(27)Al ratios from (5.66 +/- 0.80) to (1.36 +/- 0.52) x 10(-5), indicating that Allende chondrule formation began contemporaneously with the formation of CAIs, and continued for at least 1.4 Myr. Chondrule formation processes recorded by Allende and other chondrites may have persisted for at least 2-3 Myr in the young Solar System.  相似文献   

11.
The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.  相似文献   

12.
Caro G  Bourdon B  Halliday AN  Quitté G 《Nature》2008,452(7185):336-339
Small isotopic differences in the atomic abundance of neodymium-142 (142Nd) in silicate rocks represent the time-averaged effect of decay of formerly live samarium-146 (146Sm) and provide constraints on the timescales and mechanisms by which planetary mantles first differentiated. This chronology, however, assumes that the composition of the total planet is identical to that of primitive undifferentiated meteorites called chondrites. The difference in the 142Nd/144Nd ratio between chondrites and terrestrial samples may therefore indicate very early isolation (<30 Myr from the formation of the Solar System) of the upper mantle or a slightly non-chondritic bulk Earth composition. Here we present high-precision 142Nd data for 16 martian meteorites and show that Mars also has a non-chondritic composition. Meteorites belonging to the shergottite subgroup define a planetary isochron yielding an age of differentiation of 40 +/- 18 Myr for the martian mantle. This isochron does not pass through the chondritic reference value (100 x epsilon(142)Nd = -21 +/- 3; 147Sm/144Nd = 0.1966). The Earth, Moon and Mars all seem to have accreted in a portion of the inner Solar System with approximately 5 per cent higher Sm/Nd ratios than material accreted in the asteroid belt. Such chemical heterogeneities may have arisen from sorting of nebular solids or from impact erosion of crustal reservoirs in planetary precursors. The 143Nd composition of the primitive mantle so defined by 142Nd is strikingly similar to the putative endmember component 'FOZO' characterized by high 3He/4He ratios.  相似文献   

13.
Thommes EW  Duncan MJ  Levison HF 《Nature》1999,402(6762):635-638
Planets are believed to have formed through the accumulation of a large number of small bodies. In the case of the gas-giant planets Jupiter and Saturn, they accreted a significant amount of gas directly from the protosolar nebula after accumulating solid cores of about 5-15 Earth masses. Such models, however, have been unable to produce the smaller ice giants Uranus and Neptune at their present locations, because in that region of the Solar System the small planetary bodies will have been more widely spaced, and less tightly bound gravitationally to the Sun. When applied to the current Jupiter-Saturn zone, a recent theory predicts that, in addition to the solid cores of Jupiter and Saturn, two or three other solid bodies of comparable mass are likely to have formed. Here we report the results of model calculations that demonstrate that such cores will have been gravitationally scattered outwards as Jupiter, and perhaps Saturn, accreted nebular gas. The orbits of these cores then evolve into orbits that resemble those of Uranus and Neptune, as a result of gravitational interactions with the small bodies in the outer disk of the protosolar nebula.  相似文献   

14.
Brunini A 《Nature》2006,440(7088):1163-1165
The origin of the spin-axis orientations (obliquities) of the giant planets is a fundamental issue because if the obliquities resulted from tangential collisions with primordial Earth-sized protoplanets, then they are related to the masses of the largest planetesimals out of which the planets form. A problem with this mechanism, however, is that the orbital planes of regular satellites would probably be uncorrelated with the obliquities, contrary to observations. Alternatively, they could have come from an external twist that affected the orientation of the Solar System plane; but in this model, the outer planets must have formed too rapidly, before the event that produced the twist. Moreover, the model cannot be quantitatively tested. Here I show that the present obliquities of the giant planets were probably achieved when Jupiter and Saturn crossed the 1:2 orbital resonance during a specific migration process: different migration scenarios cannot account for the large observed obliquities. The existence of the regular satellites of the giant planets does not represent a problem in this model because, although they formed soon after the planetary formation, they can follow the slow evolution of the equatorial plane it produces.  相似文献   

15.
Wood BJ  Halliday AN 《Nature》2005,437(7063):1345-1348
Kelvin calculated the age of the Earth to be about 24 million years by assuming conductive cooling from being fully molten to its current state. Although simplistic, his result is interesting in the context of the dramatic cooling that took place after the putative Moon-forming giant impact, which contributed the final approximately 10 per cent of the Earth's mass. The rate of accretion and core segregation on Earth as deduced from the U-Pb system is much slower than that obtained from Hf-W systematics, and implies substantial accretion after the Moon-forming impact, which occurred 45 +/- 5 Myr after the beginning of the Solar System. Here we propose an explanation for the two timescales. We suggest that the Hf-W timescale reflects the principal phase of core-formation before the giant impact. Crystallization of silicate perovskite in the lower mantle during this phase produced Fe(3+), which was released during the giant impact, and this oxidation resulted in late segregation of sulphur-rich metal into which Pb dissolved readily, setting the younger U-Pb age of the Earth. Separation of the latter metal then occurred 30 +/- 10 Myr after the Moon-forming impact. Over this time span, in surprising agreement with Kelvin's result, the Earth cooled by about 4,000 K in returning from a fully molten to a partially crystalline state.  相似文献   

16.
Our Solar System was formed from a cloud of gas and dust. Most of the dust mass is contained in amorphous silicates, yet crystalline silicates are abundant throughout the Solar System, reflecting the thermal and chemical alteration of solids during planet formation. (Even primitive bodies such as comets contain crystalline silicates.) Little is known about the evolution of the dust that forms Earth-like planets. Here we report spatially resolved detections and compositional analyses of these building blocks in the innermost two astronomical units of three proto-planetary disks. We find the dust in these regions to be highly crystallized, more so than any other dust observed in young stars until now. In addition, the outer region of one star has equal amounts of pyroxene and olivine, whereas the inner regions are dominated by olivine. The spectral shape of the inner-disk spectra shows surprising similarity with Solar System comets. Radial-mixing models naturally explain this resemblance as well as the gradient in chemical composition. Our observations imply that silicates crystallize before any terrestrial planets are formed, consistent with the composition of meteorites in the Solar System.  相似文献   

17.
Krot AN  Amelin Y  Cassen P  Meibom A 《Nature》2005,436(7053):989-992
Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves) in the protoplanetary disk around the early Sun. The ages of primitive chondrules in chondritic meteorites indicate that their formation started shortly after that of the calcium-aluminium-rich inclusions (4,567.2 +/- 0.7 Myr ago) and lasted for about 3 Myr, which is consistent with the dissipation timescale for protoplanetary disks around young solar-mass stars. Here we report the 207Pb-206Pb ages of chondrules in the metal-rich CB (Bencubbin-like) carbonaceous chondrites Gujba (4,562.7 +/- 0.5 Myr) and Hammadah al Hamra 237 (4,562.8 +/- 0.9 Myr), which formed during a single-stage, highly energetic event. Both the relatively young ages and the single-stage formation of the CB chondrules are inconsistent with formation during a nebular shock wave. We conclude that chondrules and metal grains in the CB chondrites formed from a vapour-melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated. These findings therefore provide evidence for planet-sized objects in the earliest asteroid belt, as required by current numerical simulations of planet formation in the inner Solar System.  相似文献   

18.
Throughout the history of the Solar System, Earth has been bombarded by interplanetary dust particles (IDPs), which are asteroid and comet fragments of diameter approximately 1-1,000 microm. The IDP flux is believed to be in quasi-steady state: particles created by episodic main belt collisions or cometary fragmentation replace those removed by comminution, dynamical ejection, and planetary or solar impact. Because IDPs are rich in 3He, seafloor sediment 3He concentrations provide a unique means of probing the major events that have affected the IDP flux and its source bodies over geological timescales. Here we report that collisional disruption of the >150-km-diameter asteroid that created the Veritas family 8.3 +/- 0.5 Myr ago also produced a transient increase in the flux of interplanetary dust-derived 3He. The increase began at 8.2 +/- 0.1 Myr ago, reached a maximum of approximately 4 times pre-event levels, and dissipated over approximately 1.5 Myr. The terrestrial IDP accretion rate was overwhelmingly dominated by Veritas family fragments during the late Miocene. No other event of this magnitude over the past approximately 10(8) yr has been deduced from main belt asteroid orbits. One remarkably similar event is present in the 3He record 35 Myr ago, but its origin by comet shower or asteroid collision remains uncertain.  相似文献   

19.
In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M(o)) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5(+5.5)(-2.7) M(o) planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M(o) M-dwarf star, where M(o) refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.  相似文献   

20.
Dai ZR  Bradley JP  Joswiak DJ  Brownlee DE  Hill HG  Genge MJ 《Nature》2002,418(6894):157-159
Grains of dust that pre-date the Sun provide insights into their formation around other stars and into the early evolution of the Solar System. Nanodiamonds recovered from meteorites, which originate in asteroids, have been thought to be the most abundant type of presolar grain. If that is true, then nanodiamonds should be at least as abundant in comets, because they are thought to have formed further out in the early Solar System than the asteroid parent bodies, and because they should be more pristine. Here we report that nanodiamonds are absent or very depleted in fragile, carbon-rich interplanetary dust particles, some of which enter the atmosphere at speeds within the range of cometary meteors. One interpretation of the results is that some (perhaps most) nanodiamonds formed within the inner Solar System and are not presolar at all, consistent with the recent detection of nanodiamonds within the accretion discs of other young stars. An alternative explanation is that all meteoritic nanodiamonds are indeed presolar, but that their abundance decreases with heliocentric distance, in which case our understanding of large-scale transport and circulation within the early Solar System is incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号