首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
给出一类不可分解的Σ1e型Banach空间上有界线性算子的谱的特殊结构,证明了存在某个Σ1e型Banach空间使其上某个(B)型良有界算子T的谱σ(T)是可数无限集.  相似文献   

2.
本文给出 T∈B(X)是拟可分解算子的一个等价条件,证明了在拟幂零等价条件下以及在相似条件下,算子的拟可分解性质是遗传的。最后,建立了拟可分解算子在其谱极大空间上的限制成为拟可分解算子的准则。无特殊声明,本文将采用[2]中的符号。定理1 T∈B(X)是拟可分解算子的充要条件是 T 有(AC)谱容度(?)(·)且(?)(·)满足条件  相似文献   

3.
本文建立了有界线性算子的一种函数演算,并得到了这种演算的谱映射定理: 引理1 设T∈D(X)-B(X),ρ(T)≠Φ,则存在S∈B(X)及ξ∈C,λ∈σ_c(S),使T=f_(ξ,λ)(S) 定理1 设T∈B(X),则对ξ∈C,λ∈σ_c(T), 我们有: 1)σ(f_(ξ,λ)(T))=f_(ξ,λ)(σ(T)); 2)σ(f_(ξ,λ)(T)(x)=f_(ξ,λ)(σ_T(x)),x∈X 通过这种演算,可以把无界封闭线性算子表示成有界线性算子函数。利用这种函数演算和相应的谱映射定理,我们证明了无界封闭线性算子是可分解(谱)算子的充要条件是它是有界可分解(谱)算子的函数。  相似文献   

4.
设 C_∞表示扩充复平面,X 表示复 Banach 空间,T 表示以(T)X 为定义域的闭线性算子,由于本文主要研究无界闭线性算子,故将 T 的预解集 P(T)及谱σ(T)均视为 C_∞的子集,并假定 P(T)非空.定义1.设 T 是(T)X 为定义域的有单值扩张性的闭线性算子,T 称为封闭强拟可分解算子,如果对σ(T)的任意有限开复盖.{G_i}_i~=i及 T 的任意谱极大空间 Y,存在  相似文献   

5.
在本文中,我们引入封闭可分解算子和封闭算子的谱容量的概念。并证明了如下的结果:(i)如果 T∈Q(X)(Q(X)表示复 Banach 空间 X 上有非空豫解集的封闭算子(不一定稠定)的全体)是2-可分解的,那末:(a)T 有 S(?)EP。(b)σ(T)=σ_(?)(T)。(c)对任意的开集 G((?)C),存在 Y∈SM(T)。使得(?)(d)(0) ∈SM(T)。(e)对于任意非零的 Y∈INV(T),σ(T|Y)≠(?)。(f)若 Y∈INV(T)且σ(T|Y)有界,那末 Y(?)D_T。(g)如果对于任意的 x∈D_T,σ(x,T)都是相界的,那末 T∈B(X)。(ii)如果 T∈Q(X),那末下列四条等价:(a)T 有2-谱容量;(b)T 有谱容量;(e)T2-可分解;(d)T 可分解并且,T 强可分解必须且只须 T 有强谱容量。(iii)如果 T∈Q(X)有2-谱容量 E,那末(a)suppE=σ(T)。(b)对任意的闭集 F(?)C,E(F)=X_T(F)∈SM(T)。  相似文献   

6.
本文是文献[9],[10]的继续。在本文中,我们研究了(AC)算子,可分解算子,谱算子以及它们之间的关系。证明了:(1)若T∈B(X)是(AC)算子,对于每个E,F∈F,有则T是可分解算子。(2)T∈B(X)是谱算子当且仅当T是(AC)算子且满足下述条件:(ⅰ)对每个Borel子集δ,δ∈B,有X_T(δ)=X_T((δ∩δ)⊕此处⊕表示直接和;(ⅱ)对每个x∈X,数集是有界的,此处(3)若是(H)空间,是可分解算子,则下述条件是等价的:(ⅰ)(E)(ⅱ)①从推出(此处P_F是从到_T(F)上直交射影,⊕表示直交和)。它是B.L.Wadhwa定理的新形式。  相似文献   

7.
本文证明了定理:“存在稠密地定义在Hilbe rt空间H上的闭线性算子T不具有形式T=A+B~(-1) 其中A和B为H上的有界算子.  相似文献   

8.
本文给出谱位于 Jordan 曲线上的一类闭算子是可分解算子的充分条件.设 C 和 C_∞分别表示复平面和扩充复平面.和分别表示 C_∞的闭子集族和 C 的紧子集族.X 表示复 Banach 空间.(X)和(X)分别表示 X 上的闭线性算子族和有界线性算子族.(T)表示算子 T 的定义域.ρ(T)和σ(T)分别表示 T 的预解集和  相似文献   

9.
研究了Hilbert空间X⊕X中的无穷维Hamilton算子HC=[A C 0 -A*]和HF=[A F B -A*]的纯虚谱的扰动,其中R(B)是闭的.给定算子A,B,证明了∩C∈S(X)σi(HC)=σiπ(A),∪C∈S(X)σi(HC)=σi(A),∩F∈S(X)σi(HF)=σiπ(APR(B)⊥),∪F∈S(X)σi(HF)=σi(APR(B)⊥),其中σi(T),σiπ(T),PM和S(X)分别表示T的纯虚谱,纯虚近似谱,全空间到M的正交投影和X中的所有自伴算子所成之集.  相似文献   

10.
本文是文献的继续。我们讨论了(AC)算子在T的谱极大空间上的继承性。我们证明了:(1)若是(AC)算子,是T的谱极大空间,则T在上和在商空间上的诱导算子,是(AC)算子;(2)若是可分解算子,是T的谱极大空间,则是可分解算子。这是对I.Colojoar与C.Foias的公开问题之肯定回答。  相似文献   

11.
Banach空间上有界线性算子的广义谱分析   总被引:1,自引:0,他引:1  
在文献[1]的基础上,进一步在Banach空间上讨论了有界线性算子T的广义谱集σG(T),证明了当λ∈σR(T)∪σP(T)时R(Tλ)闭,则σG(T)即为经典谱分类中的T的连续谱集σC(T).  相似文献   

12.
本文讨论了强可分解算子的若干性质,证明了当T的集合谱为其关于σ(T)的相对内部的闭包时,T强可分解蕴含T强可分解,最后给出了T为强可分解的一个充要条件。  相似文献   

13.
用溪序列、(α)性质、弱(α)性质和连续点的概念,我们证明了 Frchet空间(X,d)(即完备的可度量局部凸空间)中有界闭凸集有滴性质和拟弱滴性质的一些充要条件.其主要结论是:Frchet空间中有界闭凸集 B(int B≠ )有滴性质等价B有(α)性质,也等价B是弱紧集且B 的每个支撑点是B 的连续点.B有拟弱滴性等价于B 有弱(α)性质.  相似文献   

14.
Banach空间上算子谱的精细划分   总被引:1,自引:0,他引:1  
给出巴拿赫空间上算子谱的精细划分,证明了巴拿赫空间上的算子T有σ0p(T)=ψ0(T)∩(T),σ(T)=σB(T)∪σ0p(T)=σW(T)∪(ψ0(T)∩σ(T)0)∪σ0p(T).  相似文献   

15.
详细描述了Hilbert空间中原子CSL代数T(L)中的Lie理想的结构。证明了T(L)中的σ-弱算子拓扑闭子空间L是T(L)的Lie理想当且仅当存在T(L)的一个σ-弱算子拓扑闭结合理想J和T(L)的对角的中心的一个子空间E使得J0 L J E,其中J0是J中迹为零的元素的全体。  相似文献   

16.
应用Slice映射研究算子空间的性质Tσ,讨论了性质Tσ的遗传性;得到算子空间的性质Tσ在弱连续 同构下保持不变;证明了σ 弱算子空间A具有性质Tσ的充要条件是A M具有性质Tσ,这里M是一个vonNeumann代数.  相似文献   

17.
本文讨论在Banach 空间X 上的闭算子T 和由函数演算所确定的算子f(T)之间的关系.得到下列主要结果:(1) 若f∈(?)_(1/m)(T),且T 是超可分解的,则f(T)也是超可分解的.其中(?)_(1/m)表示在σ(T)的某邻域内解析,且在“∞”处有m 级极点的复值函数.(2) 若f∈(?)_∞(T),且T 是超可分解的,则f(T)也是超可分解的.其中(?)_∞(T)表示在σ(T)∪{∞}的某邻域内解析的复值函数全体.  相似文献   

18.
在Banach空间上,C.Foias引进可分解算子概念,它是N.Dunford谱算子的一种有意思的推广。这就自然提出如下问题:在什么样的条件下可分解算子是谱算子?在B.L.Wadhwa中给出了这个问题的部分回答。 定义 设T是Hilbert空间H上的可分解算子,对复平面上任何闭集δ,设P_δ是从H到T之谱极大空间  相似文献   

19.
设A∈B(ye),B∈B(k),C∈(B)((k),(ye))给定,对X∈B((ye),(k))定义Mx=(AXCB)ye( )k→ye( )(k).在一定条件下刻画集合∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx),其中σl(T)和σr(T)分别表示算子T的左谱和右谱.利用了算子矩阵的分块技巧和算子分块的几何结构.在C是闭值域的条件下,完全刻画了∩X∈B((k),(ye))σl(Mx)和∩X∈B((k),(ye))σl(Mx).此刻画在缺项算子矩阵的谱的研究中是新的结果,应用该刻画可以得到若干已知结论.  相似文献   

20.
本文讨论 Banach 空间上的闭可约化算子,闭谱算子及闭可分解算子的谱特征,并给出了 Banach 空间上的闭算子成为闭谱算子的充要条件。设 X 是复 Banach 空间,C(x)表示 X 中的闭线性算子全体,C_∞表示扩充复平面。定义1 T∈C(X)称为完全谱可约化算子,如果对 C_∞的每个开子集或闭子集ι及相应的谱子空间(?),存在 T 的不变子空间 M,使得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号