首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Al-Al2O3-MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M1, M2, and M3, respectively, were prepared at 1700℃ for 5 h under a flowing N2 atmosphere using the reaction sintering method. After sintering, the Al-Al2O3-MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen M1 was composed of MgO and MgAl2O4. Compared with specimen M1, specimens M2 and M3 possessed MgAlON, and its production increased with increasing aluminum addition. Under an N2 atmosphere, MgO, Al2O3, and Al in the matrix of specimens M2 and M3 reacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al-Al2O3-MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an N2 atmosphere, the partial pressure of oxygen is quite low; thus, when the Al-Al2O3-MgO composites were soaked at 580℃ for an extended period, aluminum metal was transformed into AlN. With increasing temperature, Al2O3 diffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with Al2O3 to form MgAl2O4. When the temperature was greater than (1640 ±10)℃, AlN diffused into Al2O3 and formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and MgAl2O4 at high temperatures because of their similar spinel structures.  相似文献   

2.
CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior,microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from1250 1C to 1050 1C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3ceramic sintered at 1100 1C presented good microwave dielectric properties of εr?7.27,Q f?16,850 GHz and τf? 39.53 ppm/1C, which is much better than those of pure CaSiO3 ceramic sintered at 1340oC(Q f?13,109 GHz).The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

3.
In this study, we have investigated how the dielectric loss tangent and permittivity of AlN ceramics are affected by factors such as powder mixing methods, milling time, sintering temperature, and the addition of a second conductive phase. All ceramic samples were prepared by spark plasma sintering (SPS) under a pressure of 30 MPa. AlN composite ceramics sintered with 30wt%–40wt% SiC at 1600℃ for 5 min exhibited the best dielectric loss tangent, which is greater than 0.3. In addition to AlN and β-SiC, the samples also contained 2H-SiC and Fe5Si3, as detected by X-ray difraction (XRD). The relative densities of the sintered ceramics were higher than 93%. Experimental results indicate that nano-SiC has a strong capability of absorbing electromagnetic waves. The dielectric constant and dielectric loss of AlN-SiC ceramics with the same content of SiC decreased as the frequency of electromagnetic waves increased from 1 kHz to 1 MHz.  相似文献   

4.
Metal/ceramic composite materials can be divided into two groups: one is ceramic reinforced metal matrix composite, and the other is metal toughened ceramic matrix composite. The research on these materials mainly focuses on the mechanical properties due …  相似文献   

5.
Biomorphic Al2O3 ceramics were prepared through the surface sol-gel process with filter papers as bio-templates. The filter papers were infiltrated with γ-AlOOH sol and subsequently sintered in air at high temperatures to produce the biomorphic Al2O3 ceramics. The results show that the final materials have a hierarchical structure originated from the morphology of cellulose paper. The sintering temperatures exhibit a strong effect on the surface pore-size distribution of obtained Al2O3 ceramics. Differential scanning calorimeter, scanning electron microscopy, X-ray diffraction and BET analysis were employed to characterize the microstructure, morphology and phase compositions of the final products.  相似文献   

6.
The equilibrium reaction between CaO—Al2O3—SiO2—MgO slag and 28MnCr5 molten steel was calculated to obtain the suitable slag composition which is effective for decreasing the oxygen content in molten steel. The dissolved oxygen content [O] in molten steel under different top slag conditions was calculated using a thermodynamic model and was measured using an electromotive force method in slag–steel equilibrium experiments at 1873 K. The relations among [O], the total oxygen content (T.O), and the composition of the slag were investigated. The experimental results show that both [O] and T.O decrease with decreasing SiO2 content of the slag and exhibit different trends with the changes in the CaO/Al2O3 mass ratio of the slag. Increasing the CaO/Al2O3 mass ratio results in a decrease in [O] and an increase in T.O. To ensure that T.O ≤ 20 ppm and [O] ≤ 10 ppm, the SiO2 content should be controlled to <5wt%, and the CaO/Al2O3 mass ratio should be in the range from 1.2 to 1.6.  相似文献   

7.
Hybrid mullite sol was synthesized from an aqueous solution of aluminum nitrate (AN), aluminum isopropoxide (AIP) and tetraethylorthosilicate (TEOS), doped with boehmite sol with different ratios. Pressureless sintering of the xerogel was carried out at different temperatures in the presence of boehmite doping. The xerogel and sintered powder were characterized by FTIR, TG-DSC, XRD, SEM and bulk density. The addition of boehmite caused the formation of metaphase spinel (6Al2O3·SiO2) crystal before the appearance of mullite phase, which could lead to the formation of amorphous phase and suppress the premature formation of mullite. Both of these effects improve the densification of mullite. A maximum density about 98% of the theoretical density (TD, 3.01 g/cm3 ) of mullite could be obtained for 5 wt% boehmite addition at 1200 1C pressureless sintering.  相似文献   

8.
In the present work, Si C ceramics was fabricated with Al N using B_4 C and C as sintering aids by a solid-state pressureless-sintered method. The effects of Al N contents on the densification, mechanical properties, phase compositions, and microstructure evolutions of as-obtained Si C ceramics were thoroughly investigated. Al N was found to promote further densification of the Si C ceramics due to its evaporation over 1800 °C,transportation, and solidification in the pores resulted from Si C grain coarsening. The highest relative density of 99.65% was achieved for Si C sample with 15.0 wt% Al N by the pressureless-sintered method at 2130 °C for 1 h in Ar atmosphere. Furthermore, the fracture mechanism for Si C ceramics containing Al N tended to transfer from single transgranular fracture mode to both transgranular fracture and intergranular fracture modes when the sample with 30.0 wt% Al N sintered at 1900 °C for 1 h in Ar. Also, Si C ceramics with 30.0 wt% Al N exhibited the highest fracture toughness of 5.23 MPa m~(1/2) when sintered at 1900 °C.  相似文献   

9.
Multilayer graphene (MLG)-reinforced Al2O3/TiC ceramics were fabricated through hot pressing sintering, and the reinforcing effect of MLG on the microstructure and mechanical properties of the composites was investigated by experiment and simulation. The simulation of dynamic crack initiation and propagation was investigated based on the cohesive zone method. The results show that the composite added with 0.2wt% MLG has excellent flexural strength and high fracture toughness. The major reinforcing mechanisms are the synergistic effect by strong and weak bonding interfaces, MLG pull-out, and grain refinement resulting from the addition of MLG. In addition, the aggravating of crack deflection, branching, blunting, and bridging have indispensable contribution to the improvement of the as-designed materials.  相似文献   

10.
Conclusion Ceramic-cemented carbide compact inserts have been developed by hot-pressing sintering techniques, the upper part of the compact insert is of Al2O3 + TiB2 ceramic material, while the base part of the compact insert is of WC + Co cemented carbide. The compact insert makes full use of the advantages of the high hardness of ceramic materials and the high strength of cemented carbide, and its mechanical properties are just between that of Al2O3 + TiB2 and WC + Co. SEM, XRD and electron microprobe analysis showed that element diffusion and formation of new phases are the main causes for the bond of Al2O3 + TiB2 with WC + Co in the interface.  相似文献   

11.
The microstructure evolution and electrolysis behavior of (Cu52Ni30Fe18)-xNiFe2O4 (x=40wt%, 50wt%, 60wt%, and 70wt%) composite inert anodes for aluminum electrowinning were studied. NiFe2O4 was synthesized by solid-state reaction at 950℃. The dense anode blocks were prepared by ball-milling followed by sintering under a N2 atmosphere. The phase evolution of the anodes after sintering was determined by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results indicate that a substitution reaction between Fe in the alloy phase and Ni in the oxide phase occurs during the sintering process. The samples were also examined as inert anodes for aluminum electrowinning in the low-temperature KF-NaF-AlF3 molten electrolyte for 24 h. The cell voltage during electrolysis and the corrosion scale on the anodes were analyzed. The results confirm that the scale has a self-repairing function because of the synergistic reaction between the alloy phase with Fe added and the oxide phase. The estimated wear rate of the (Cu52Ni30Fe18)-50NiFe2O4 composite anode is 2.02 cm·a-1.  相似文献   

12.
为了研究桥箔电爆炸驱动飞片过程中,桥区宽度和加速膛材料对飞片速度的影响,采用AUTODYN软件对这一过程进行数值模拟.模拟结果表明,相比于0.27 mm、0.30 mm、0.33 mm、0.36 mm和0.42 mm的桥区宽度,0.24 mm桥区宽度所驱动的飞片速度最大.对飞片经铝、镍、铜和氧化铝陶瓷四种材料加速膛剪切后,飞片速度和形貌进行了模拟,结果表明氧化铝陶瓷的硬度大,可以提高飞片速度和剪切效果,且加速膛发生形变小,优于其它三种材料.  相似文献   

13.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

14.
Self-lubricating Al2O3-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) serving as solid lubricants, were fabricated by using the pulse electric current sintering (PECS) technique. The coefficient of friction (COF) of the Al2O3-15wt% ZrO2 composite without/with sulfides was in the range of 0.37–0.48 and 0.27–0.49, respectively. As the amount of sulfides increased, the COF and the wear rate decreased. The reduction in COF and wear rate of the sulfide-containing composite is caused by a reduction in shear stresses between the specimen and the tribological medium due to the formation of a lubricating film resulting from the lamellar structure of sulfides located on the worn surface.  相似文献   

15.
采用粉末冶金技术制备出铝电解用NiFe2O4-10NiO陶瓷基体和30(40Cu-Ni)/(NiFe2O4-10NiO)金属陶瓷阳极,并在低温电解条件下,对NiFe2O4陶瓷相中Fe元素的腐蚀行为进行研究。结果表明,在烧结过程中,NiFe2O4尖晶石陶瓷基体会在氮气中发生离解,在动态化学腐蚀试验和电解试验中,陶瓷相中的Fe元素更容易进入电解质;电解24h后,铝液中Fe、Ni、Cu的含量分别为0.45%、0.13%和0.03%。  相似文献   

16.
Using coal fly ash slurry samples supplemented with different amounts of Al2O3, we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach, which is a popular method suitable for industrial application. The microstructure, phase composition, and compressive strength of the sintered samples were investigated. Mullite was identified in all of the prepared materials by X-ray diffraction analysis. The microstructure and compressive strength were strongly influenced by the content of Al2O3. As the Al/Si mole ratio in the starting materials was increased from 0.84 to 2.40, the amount of amorphous phases in the sintered microstructure decreased and the compressive strength of the sintered samples increased. A further increase in the Al2O3 content resulted in a decrease in the compressive strength of the sintered samples. The mullite-based porous ceramic with an Al/Si molar ratio of 2.40 exhibited the highest compressive strength and the greatest shrinkage among the investigated samples prepared using coal fly ash as the main starting material.  相似文献   

17.
3 Y-TZP/3 wt% Al_2O_3 powder was coated with varying amounts of BN using the urea and borate reaction sintering method, and then multiphase ceramics were prepared by hot pressing sintering. The micro-topography and the compositional analysis of synthesized ceramics were conducted through scanning electron microscopy, transmission electron microscopy and X-ray diffraction. A mechanical tester was used to analyze the Vickers hardness, fracture toughness, and bending strength of the synthesized ceramics. The results showed that the ceramic with a BN content of 12 wt% showed the best processability, but had diminished mechanical properties(such as fracture toughness and bending strength). The ceramic with a BN content of 9 wt% showed better processability than those with 3 wt% and 6 wt% BN. However, the fracture toughness was affected by the addition of 9 wt% BN, making this ceramic only usable as a base material for a three-unit fixed bridge. In contrast, the ceramics with a BN content of 3 wt% or 6 wt% fulfilled the criteria for use in multi-unit restoration, but their low processability made them unsuitable for milling after sintering.  相似文献   

18.
We reported the dielectric properties of CaCu3Ti4O12 in the temperature range from room temperature to 800℃ and the frequency range from 20 Hz to 10 MHz.Apart from the widely reported dielectric anomaly occurring around 200℃,three additional dielectric anomalies were found.The new anomalies are very sensitive to electrode sintering conditions and annealing atmospheres,indicating that they are dependent not only on the electrode-sample contact but also on oxygen vacancies.  相似文献   

19.
The recovery of iron from the screw classifier overflow slimes by direct flotation was studied. The relative effectiveness of sodium silicates with different silica-to-soda mole ratios as depressants for silica and silicate bearing minerals was investigated. Silica-to-soda mole ratio and silicate dosage were found to have significant effect on the separation efficiency. The results show that an increase of Fe content in the concentrate is observed with concomitant reduction in SiO2 and Al2O3 levels when a particular type of sodium silicate at a proper dosage is used. The concentrate of 58.89wt% Fe, 4.68wt% SiO2, and 5.28wt% Al2O3 with the weight recovery of 38.74% and the metal recovery of 41.13% can be obtained from the iron ore slimes with 54.44wt% Fe, 6.72wt% SiO2, and 6.80wt% Al2O3, when Na2SiO3 with a silica-to-soda mole ratio of 2.19 is used as a depressant at a feed rate of 0.2 kg/t.  相似文献   

20.
Typical O??-sialon-based ceramics, with a formula of Si2?x Al x O1+x N2?x , where x was set as 0.25, were fabricated by in-situ synthesis. Si3N4, Al2O3, and SiO2 powders were used as raw materials, and MgO and Y2O3 were added as sintering additives. All the samples were sintered at different temperatures under a nitrogen pressure of 0.25?C0.30 MPa, and their microstructure, phase content, and thermal conductivity were evaluated. The effects of O??-sialon and ??-Si3N4 on the thermal conductivity were analyzed by numerical calculation in detail. In the case of the similar porosity, the thermal conductivity of O??-sialon-based ceramics decreased with the ratio of O??-sialon/??-Si3N4 increasing. When the ratio was 12, the thermal conductivity of O??-sialon ceramics sintered at 1360°C was 1.197 W·m?1·K?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号