首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
段仁杰  陈抚良  何水军 《江西科学》2011,29(3):307-309,312
设Mn为Sn+p中的紧致子流形,∪M=∪x∈M∪Mx是M的单位切丛,文献[1]通过引入函数f(x)=maxu,v∈Mx‖B(u,u)-B(v,v)‖2,其中B是M的第2基本形式,进行研究得到一个pinching定理。将球面空间中的类似问题推广到局部对称共形平坦空间中得到一个主要定理。  相似文献   

2.
主要利用函数f(x)=maxu,v∈UxM||B(u,u)-B(v,v)||^2研究具有平行平均曲率向量的二维复空间型的全实曲面,并得到关于全脐点子流形的Pinching定理。  相似文献   

3.
设M是Sasaki空间形式 M2n+1(c)的一个n维极小积分子流形,B是M的第二基本形式, UM UMx是M的单位切丛. M2n+1(c)的积分子流形的最大维数是n,关于第二基本形式模长平方已经得到=∪x∈M了较好的Pinching定理(四川师范大学学报(自然科学版),1999,22(2):158~161).研究函数f(u)=‖B(u,u)‖2,u∈ UM,给出关于第二基本形式的一个Pinching定理.  相似文献   

4.
设N_p~(n+p)为n+p维局部对称完备连通的伪黎曼流形,其截面曲率K_N满足0δ≤K_N≤1,Mn为N_p~(n+p)中具有平行平均曲率的类空子流形.通过计算第二基本形式的Laplacian,得到这类子流形关于第二基本形式模长平方的积分不等式及极大条件下的Pinching定理.  相似文献   

5.
设Nn p是截面曲率K满足12<δ≤KN≤1的n p维局部对称完备黎曼流形,M是N的具有平行平均曲率向量的n维紧致子流形,我们讨论这类子流形,得到其关于截面曲率拼挤定理,将常曲率空间中的类似问题推广到局部对称空间。  相似文献   

6.
一类带Hardy临界指数的半线性椭圆方程的多重解问题   总被引:2,自引:0,他引:2  
应用集中紧性引理及对称山路定理讨论一类半线性椭圆方程:-Δpu=α|u|p-2u|x|-p+f(x,u),u∈W10,p(Ω).当f(x,u)满足一定条件时,方程存在无穷多解.  相似文献   

7.
该文研究问题-div(φp(u))=γm(x)f(u),x∈B,u(x)=0,x∈B径向结点解的存在性.其中 B是RN上的一个单位球, N≥2, 1〈p〈+∞, φp(s)=|s|p-2s, m∈M(B)是变号函数且M(B)=-(B)是径向对称的且.γ是一个参数,f∈C(,),对于s≠0 满足 sf(s)〉0.首先, 当满足f0,f∞∈(0,∞)时,引出上述问题的全局分歧结论; 其次, 给出序列集取极限的引理; 再次,当满足f0(0,∞) 或 f∞(0,∞), 且γ≠0满足一定区间时, 利用上述全局分歧技巧和连通序列集取极限的方法, 可以获得上述问题径向结点解的存在性,其中f0=lim|s|→0f(s)/φp(s),f∞=lim|s|→∞f(s)/φp(s).  相似文献   

8.
一类p(x)-Laplace方程正解的存在性   总被引:2,自引:0,他引:2  
考虑方程{-△p(x)u=f(u),u-0 x∈Ω,x∈aΩ正解的存在性,这里-△p(x)u=-div(|△u|p(x)-2△u),p(x)∈C1(RN)是径向对称的,Ω=B(0,R)∩ RN是有界径向对称区域,其中R是充分大的正数.当u→ ∞lim f(u)up--1=0时,证明了方程正解的存在性,而且未对f(0)的符号做任何限制.  相似文献   

9.
设M是Sasaki空间形式^-M^2n 1(c)的一个n维极小积分子流形,B是M的第二基本形式,^-UM=Ux∈M^UMx是M的单位切丛。^-M^2n 1(c)的积分子流形的最大维数是n,关于第二基本形式模长平方已经得到了较好的Pinching定量(四川师范大学报(自然科学版),1999,22(2):158-161)。研究函数f(u)=||B(u,u)||^2,U∈^-UM,给出关于第二基本形式的一个Pinching定理。  相似文献   

10.
讨论半线性椭圆型方程Δu=p(x)f(u),其中f(s)是(0,+∞)中非负连续可微的单调递增函数,且lims→0f(s)=0,lims→∞(f(s))/(s)=k(k<∞),p(x)是RN(N≥3)中局部Hlder连续的非负函数.当p(x)=p(x)时,方程存在整体爆破解的充要条件是∫∞0tp(t)dt=∞;而当p(x)满足∫∞0tφ(t)dt<∞,其中φ(t)=maxx=tp(x)时,方程存在整体有界解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号