首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Ice-sheet acceleration driven by melt supply variability   总被引:2,自引:0,他引:2  
Schoof C 《Nature》2010,468(7325):803-806
Increased ice velocities in Greenland are contributing significantly to eustatic sea level rise. Faster ice flow has been associated with ice-ocean interactions in water-terminating outlet glaciers and with increased surface meltwater supply to the ice-sheet bed inland. Observed correlations between surface melt and ice acceleration have raised the possibility of a positive feedback in which surface melting and accelerated dynamic thinning reinforce one another, suggesting that overall warming could lead to accelerated mass loss. Here I show that it is not simply mean surface melt but an increase in water input variability that drives faster ice flow. Glacier sliding responds to melt indirectly through changes in basal water pressure, with observations showing that water under glaciers drains through channels at low pressure or through interconnected cavities at high pressure. Using a model that captures the dynamic switching between channel and cavity drainage modes, I show that channelization and glacier deceleration rather than acceleration occur above a critical rate of water flow. Higher rates of steady water supply can therefore suppress rather than enhance dynamic thinning, indicating that the melt/dynamic thinning feedback is not universally operational. Short-term increases in water input are, however, accommodated by the drainage system through temporary spikes in water pressure. It is these spikes that lead to ice acceleration, which is therefore driven by strong diurnal melt cycles and an increase in rain and surface lake drainage events rather than an increase in mean melt supply.  相似文献   

2.
Rapid warming over the past 50?years on the Antarctic Peninsula is associated with the collapse of a number of ice shelves and accelerating glacier mass loss. In contrast, warming has been comparatively modest over West Antarctica and significant changes have not been observed over most of East Antarctica, suggesting that the ice-core palaeoclimate records available from these areas may not be representative of the climate history of the Antarctic Peninsula. Here we show that the Antarctic Peninsula experienced an early-Holocene warm period followed by stable temperatures, from about 9,200 to 2,500?years ago, that were similar to modern-day levels. Our temperature estimates are based on an ice-core record of deuterium variations from James Ross Island, off the northeastern tip of the Antarctic Peninsula. We find that the late-Holocene development of ice shelves near James Ross Island was coincident with pronounced cooling from 2,500 to 600?years ago. This cooling was part of a millennial-scale climate excursion with opposing anomalies on the eastern and western sides of the Antarctic Peninsula. Although warming of the northeastern Antarctic Peninsula began around 600 years ago, the high rate of warming over the past century is unusual (but not unprecedented) in the context of natural climate variability over the past two millennia. The connection shown here between past temperature and ice-shelf stability suggests that warming for several centuries rendered ice shelves on the northeastern Antarctic Peninsula vulnerable to collapse. Continued warming to temperatures that now exceed the stable conditions of most of the Holocene epoch is likely to cause ice-shelf instability to encroach farther southward along the Antarctic Peninsula.  相似文献   

3.
Sundal AV  Shepherd A  Nienow P  Hanna E  Palmer S  Huybrechts P 《Nature》2011,469(7331):521-524
Fluctuations in surface melting are known to affect the speed of glaciers and ice sheets, but their impact on the Greenland ice sheet in a warming climate remains uncertain. Although some studies suggest that greater melting produces greater ice-sheet acceleration, others have identified a long-term decrease in Greenland's flow despite increased melting. Here we use satellite observations of ice motion recorded in a land-terminating sector of southwest Greenland to investigate the manner in which ice flow develops during years of markedly different melting. Although peak rates of ice speed-up are positively correlated with the degree of melting, mean summer flow rates are not, because glacier slowdown occurs, on average, when a critical run-off threshold of about 1.4?centimetres a day is exceeded. In contrast to the first half of summer, when flow is similar in all years, speed-up during the latter half is 62?±?16 per cent less in warmer years. Consequently, in warmer years, the period of fast ice flow is three times shorter and, overall, summer ice flow is slower. This behaviour is at odds with that expected from basal lubrication alone. Instead, it mirrors that of mountain glaciers, where melt-induced acceleration of flow ceases during years of high melting once subglacial drainage becomes efficient. A model of ice-sheet flow that captures switching between cavity and channel drainage modes is consistent with the run-off threshold, fast-flow periods, and later-summer speeds we have observed. Simulations of the Greenland ice-sheet flow under climate warming scenarios should account for the dynamic evolution of subglacial drainage; a simple model of basal lubrication alone misses key aspects of the ice sheet's response to climate warming.  相似文献   

4.
The stability of the Antarctic ice shelves in a warming climate has long been discussed, and the recent collapse of a significant part, over 12,500 km2 in area, of the Larsen ice shelf off the Antarctic Peninsula has led to a refocus toward the implications of ice shelf decay for the stability of Antarctica's grounded ice. Some smaller Antarctic ice shelves have undergone periodic growth and decay over the past 11,000 yr (refs 7-11), but these ice shelves are at the climatic limit of ice shelf viability and are therefore expected to respond rapidly to natural climate variability at century to millennial scales. Here we use records of diatoms, detrital material and geochemical parameters from six marine sediment cores in the vicinity of the Larsen ice shelf to demonstrate that the recent collapse of the Larsen B ice shelf is unprecedented during the Holocene. We infer from our oxygen isotope measurements in planktonic foraminifera that the Larsen B ice shelf has been thinning throughout the Holocene, and we suggest that the recent prolonged period of warming in the Antarctic Peninsula region, in combination with the long-term thinning, has led to collapse of the ice shelf.  相似文献   

5.
Hellmer HH  Kauker F  Timmermann R  Determann J  Rae J 《Nature》2012,485(7397):225-228
The Antarctic ice sheet loses mass at its fringes bordering the Southern Ocean. At this boundary, warm circumpolar water can override the continental slope front, reaching the grounding line through submarine glacial troughs and causing high rates of melting at the deep ice-shelf bases. The interplay between ocean currents and continental bathymetry is therefore likely to influence future rates of ice-mass loss. Here we show that a redirection of the coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf during the second half of the twenty-first century would lead to increased movement of warm waters into the deep southern ice-shelf cavity. Water temperatures in the cavity would increase by more than 2 degrees Celsius and boost average basal melting from 0.2 metres, or 82 billion tonnes, per year to almost 4 metres, or 1,600 billion tonnes, per year. Our results, which are based on the output of a coupled ice-ocean model forced by a range of atmospheric outputs from the HadCM3 climate model, suggest that the changes would be caused primarily by an increase in ocean surface stress in the southeastern Weddell Sea due to thinning of the formerly consolidated sea-ice cover. The projected ice loss at the base of the Filchner-Ronne Ice Shelf represents 80 per cent of the present Antarctic surface mass balance. Thus, the quantification of basal mass loss under changing climate conditions is important for projections regarding the dynamics of Antarctic ice streams and ice shelves, and global sea level rise.  相似文献   

6.
Current ice loss from the West Antarctic Ice Sheet (WAIS) accounts for about ten per cent of observed global sea-level rise. Losses are dominated by dynamic thinning, in which forcings by oceanic or atmospheric perturbations to the ice margin lead to an accelerated thinning of ice along the coastline. Although central to improving projections of future ice-sheet contributions to global sea-level rise, the incorporation of dynamic thinning into models has been restricted by lack of knowledge of basal topography and subglacial geology so that the rate and ultimate extent of potential WAIS retreat remains difficult to quantify. Here we report the discovery of a subglacial basin under Ferrigno Ice Stream up to 1.5?kilometres deep that connects the ice-sheet interior to the Bellingshausen Sea margin, and whose existence profoundly affects ice loss. We use a suite of ice-penetrating radar, magnetic and gravity measurements to propose a rift origin for the basin in association with the wider development of the West Antarctic rift system. The Ferrigno rift, overdeepened by glacial erosion, is a conduit which fed a major palaeo-ice stream on the adjacent continental shelf during glacial maxima. The palaeo-ice stream, in turn, eroded the 'Belgica' trough, which today routes warm open-ocean water back to the ice front to reinforce dynamic thinning. We show that dynamic thinning from both the Bellingshausen and Amundsen Sea region is being steered back to the ice-sheet interior along rift basins. We conclude that rift basins that cut across the WAIS margin can rapidly transmit coastally perturbed change inland, thereby promoting ice-sheet instability.  相似文献   

7.
Pedersenbreen is a small polythermal valley glacier, located in Svalbard, which has been one of the two glaciers monitored by Chinese Arctic expedition members since 2004. This study estimates its area and volume and analyzes its change during 1936-1990-2009, using field collected GPS/GPR data in 2009 and historical topographic maps published by the Norwegian Polar Institute. We have found that Pedersenbreen is just like many other valley glaciers in Svalbard, having experienced a significant recession since the end of Little Ice Age in the early 20th century. The glacier tongue has retreated more than 0.6 km, while ice volume has decreased by approximately 13%. The overall thinning rate of Pedersenbreen has shown acceleration during the recent decades. Further analysis shows that the ice tongue in the downstream area of Pedersenbreen is melting at the highest rate, while a simultaneous accumulation occurred in the upstream. However, as global temperatures increase, the accumulation area is reducing year by year.  相似文献   

8.
Shevenell AE  Ingalls AE  Domack EW  Kelly C 《Nature》2011,470(7333):250-254
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Ni?o/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling.  相似文献   

9.
Large fluctuations in speed on Greenland's Jakobshavn Isbrae glacier   总被引:1,自引:0,他引:1  
Joughin I  Abdalati W  Fahnestock M 《Nature》2004,432(7017):608-610
It is important to understand recent changes in the velocity of Greenland glaciers because the mass balance of the Greenland Ice Sheet is partly determined by the flow rates of these outlets. Jakobshavn Isbrae is Greenland's largest outlet glacier, draining about 6.5 per cent of the ice-sheet area, and it has been surveyed repeatedly since 1991 (ref. 2). Here we use remote sensing data to measure the velocity of Jakobshavn Isbrae between 1992 and 2003. We detect large variability of the velocity over time, including a slowing down from 6,700 m yr(-1) in 1985 to 5,700 m yr(-1) in 1992, and a subsequent speeding up to 9,400 m yr(-1) by 2000 and 12,600 m yr(-1) in 2003. These changes are consistent with earlier evidence for thickening of the glacier in the early 1990s and rapid thinning thereafter. Our observations indicate that fast-flowing glaciers can significantly alter ice discharge at sub-decadal timescales, with at least a potential to respond rapidly to a changing climate.  相似文献   

10.
Dome A, located in the central East Antarctic ice sheet (EAIS), is the highest summit of the Antarctic ice sheet. From ice-sheet evolution modeling results, Dome A is likely to preserve over one million years of the Earth’s paleo-climatic and -environmental records, and considered an ideal deep ice core drilling site. Ice thickness and subglacial topography are critical factors for ice-sheet models to determine the timescale and location of a deep ice core. During the 21st and 24th Chinese National Antarctic Research Expedition (CHINARE 21, 2004/05; CHINARE 24, 2007/08), ground-based ice radar systems were used to a three-dimensional investigation in the central 30 km×30 km region at Dome A. The successfully obtained high resolution and accuracy data of ice thickness and subglacial topography were then interpolated into the ice thickness distribution and subglacial topography digital elevation model (DEM) with a regular grid resolution of 140.5 m×140.5 m. The results of the ice radar investigation indicate that the average ice thickness in the Dome A central 30 km×30 km region is 2233 m, with a minimal ice thickness of 1618 m and a maximal ice thickness of 3139 m at Kunlun Station. The subglacial topography is relatively sharp, with an elevation range of 949–2445 m. The typical, clear mountain glaciation morphology is likely to reflect the early evolution of the Antarctic ice sheet. Based on the ice thickness distribution and subglacial topography characteristics, the location of Kunlun Station was suggested to carry out the first high-resolution, long time-scale deep ice core drilling. However, the internal structure and basal environments at Kunlun Station still need further research to determine.  相似文献   

11.
A Kääb  E Berthier  C Nuth  J Gardelle  Y Arnaud 《Nature》2012,488(7412):495-498
Glaciers are among the best indicators of terrestrial climate variability, contribute importantly to water resources in many mountainous regions and are a major contributor to global sea level rise. In the Hindu Kush-Karakoram-Himalaya region (HKKH), a paucity of appropriate glacier data has prevented a comprehensive assessment of current regional mass balance. There is, however, indirect evidence of a complex pattern of glacial responses in reaction to heterogeneous climate change signals. Here we use satellite laser altimetry and a global elevation model to show widespread glacier wastage in the eastern, central and south-western parts of the HKKH during 2003-08. Maximal regional thinning rates were 0.66?±?0.09 metres per year in the Jammu-Kashmir region. Conversely, in the Karakoram, glaciers thinned only slightly by a few centimetres per year. Contrary to expectations, regionally averaged thinning rates under debris-mantled ice were similar to those of clean ice despite insulation by debris covers. The 2003-08 specific mass balance for our entire HKKH study region was -0.21?±?0.05?m?yr(-1) water equivalent, significantly less negative than the estimated global average for glaciers and ice caps. This difference is mainly an effect of the balanced glacier mass budget in the Karakoram. The HKKH sea level contribution amounts to one per cent of the present-day sea level rise. Our 2003-08 mass budget of -12.8?±?3.5 gigatonnes (Gt) per year is more negative than recent satellite-gravimetry-based estimates of -5?±?3?Gt?yr(-1) over 2003-10 (ref. 12). For the mountain catchments of the Indus and Ganges basins, the glacier imbalance contributed about 3.5% and about 2.0%, respectively, to the annual average river discharge, and up to 10% for the Upper Indus basin.  相似文献   

12.
Gudmundsson GH 《Nature》2006,444(7122):1063-1064
Most of the ice lost from the Antarctic ice sheet passes through a few fast-flowing and highly dynamic ice streams. Quantifying temporal variations in flow in these ice streams, and understanding their causes, is a prerequisite for estimating the potential contribution of the Antarctic ice sheet to global sea-level change. Here I show that surface velocities on a major West Antarctic Ice Stream, Rutford Ice Stream, vary periodically by about 20 per cent every two weeks as a result of tidal forcing. Tidally induced motion on ice streams has previously been thought to be limited to diurnal or even shorter-term variations. The existence of strong fortnightly variations in flow demonstrates the potential pitfalls of using repeated velocity measurements over intervals of days to infer long-term change.  相似文献   

13.
Fountain AG  Jacobel RW  Schlichting R  Jansson P 《Nature》2005,433(7026):618-621
Understanding the flow of water through the body of a glacier is important, because the spatial distribution of water and the rate of infiltration to the glacier bottom is one control on water storage and pressure, glacier sliding and surging, and the release of glacial outburst floods. According to the prevailing hypothesis, this water flow takes place in a network of tubular conduits. Here we analyse video images from 48 boreholes drilled into the small Swedish glacier Storglaci?ren, showing that the glacier's hydrological system is instead dominated by fractures that convey water at slow speeds. We detected hydraulically connected fractures at all depths, including near the glacier bottom. Our observations indicate that fractures provide the main pathways for surface water to reach deep within the glacier, whereas tubular conduits probably form only in special circumstances. A network of hydraulically linked fractures offers a simple explanation for the origin and evolution of the englacial water flow system and its seasonal regeneration. Such a fracture network also explains radar observations that reveal a complex pattern of echoes rather than a system of conduits. Our findings may be important in understanding the catastrophic collapse of ice shelves and rapid hydraulic connection between the surface and bed of an ice sheet.  相似文献   

14.
为了研究南极冰盖消融对全球海平面变化的影响,利用2003年1月—2016年6月的重力恢复与气候实验时变重力场数据反演该地区冰盖质量变化,并采用去相关滤波P3M6加上300 km Fan滤波的组合算法削弱条带误差等影响,扣除冰后回弹和泄露误差影响.结果表明:南极地区冰盖质量变化整体表现为加速消融趋势,其质量变化率为(-1...  相似文献   

15.
Ren  JiaWen  Ye  BaiSheng  Ding  YongJian  Liu  ShiYin 《科学通报(英文版)》2011,56(16):1661-1664
Recent studies have shown that cryospheric melting is becoming the dominant factor responsible for sea level rise,and that the melt-water from mountain glaciers and ice caps has comprised the majority of the cryospheric contribution since 2003.Analysis of the estimations of cryospheric melt-water and precipitation in glacier regions indicated that the potential contribution of the cryosphere in China is 0.14 to 0.16 mm a–1,of which approximately 0.12 mm a–1 is from glaciers.The contribution of glaciers in the outflow river basins is about 0.07 mm a–1,accounting for 6.4%of the total from global glaciers and ice caps.  相似文献   

16.
Raper SC  Braithwaite RJ 《Nature》2006,439(7074):311-313
The mean sea level has been projected to rise in the 21st century as a result of global warming. Such projections of sea level change depend on estimated future greenhouse emissions and on differing models, but model-average results from a mid-range scenario (A1B) suggests a 0.387-m rise by 2100 (refs 1, 2). The largest contributions to sea level rise are estimated to come from thermal expansion (0.288 m) and the melting of mountain glaciers and icecaps (0.106 m), with smaller inputs from Greenland (0.024 m) and Antarctica (- 0.074 m). Here we apply a melt model and a geometric volume model to our lower estimate of ice volume and assess the contribution of glaciers to sea level rise, excluding those in Greenland and Antarctica. We provide the first separate assessment of melt contributions from mountain glaciers and icecaps, as well as an improved treatment of volume shrinkage. We find that icecaps melt more slowly than mountain glaciers, whose area declines rapidly in the 21st century, making glaciers a limiting source for ice melt. Using two climate models, we project sea level rise due to melting of mountain glaciers and icecaps to be 0.046 and 0.051 m by 2100, about half that of previous projections.  相似文献   

17.
帕隆藏布流域位于中国海洋性冰川最为发育的藏东南地区,近年来随着全球温室效应加剧,帕隆藏布流域冰川变化极为显著。采用多期遥感影像,对1994~2015年间帕隆藏布流域波密至然乌段的冰川变化趋势、原因及其影响进行研究。结果表明:(1)20余年间冰川总面积减少了451. 72 km2,各冰川每年大约退缩2. 48%~2. 95%,气温升高以及降雨量减少是导致冰川面积持续退缩的主要原因。(2)由于帕隆藏布江南岸山坡所接收的太阳辐射热量更少,但降水却更加充沛,使得帕隆藏布江南岸冰川分布面积及覆盖率远大于北岸,而冰川退缩速率远小于北岸。(3)冰川的不断退缩使得沟道上游大量冻融松散物源在冰雪融水的外动力条件下,进入沟道形成松散堆积物源,导致流域内大规模发育冰川泥石流。由于帕隆藏布江南岸冰川规模更大,导致帕隆藏布江南岸冰川泥石流更为发育。(4)冰川变化动态监测对冰川泥石流机理分析以及预警研究工作有着重要的参考指导价值。  相似文献   

18.
The maritime glaciers are sensitive to climate change because of high annual precipitation and high air temperature in the region. A combined comprehensive study was carried out based on glacier mass balance observation, GPS-based glacier terminus position survey, glacier Ground Penetrating Radar, topography maps and RS satellite images in the Kangri Karpo Mountains, Southeast Tibet. The study revealed a strong ice mass loss and quick glacier retreat since the 1970s. Ata Glacier, one glacier from the south slope of the Kangri Karpo Mountains, has formed a 6-km-long terminal moraine zone at the end of the glacier since the 1970s, and the accelerating retreat is largely due to the strong glacier surface melting. Mass balance study on the other four glaciers on the northern side of the Kangri Karpo Mountains shows that they are in large negative mass balance and the glaciers had retreated 15--19 m from May 2006 to May 2007. The in-situ glacier observation also shows that the glacier retreat is more obvious in small glaciers. The enhanced ice mass deficit caused by climate warming and the ongoing extinction of many small glaciers in this region could seriously affect the water resources, environ- ments, local climate and regional sustainable development in the near future.  相似文献   

19.
Bell RE  Studinger M  Tikku AA  Clarke GK  Gutner MM  Meertens C 《Nature》2002,416(6878):307-310
The subglacial Lake Vostok may be a unique reservoir of genetic material and it may contain organisms with distinct adaptations, but it has yet to be explored directly. The lake and the overlying ice sheet are closely linked, as the ice-sheet thickness drives the lake circulation, while melting and freezing at the ice-sheet base will control the flux of water, biota and sediment through the lake. Here we present a reconstruction of the ice flow trajectories for the Vostok core site, using ice-penetrating radar data and Global Positioning System (GPS) measurements of surface ice velocity. We find that the ice sheet has a significant along-lake flow component, persistent since the Last Glacial Maximum. The rates at which ice is frozen (accreted) to the base of the ice sheet are greatest at the shorelines, and the accreted ice layer is subsequently transported out of the lake. Using these new flow field and velocity measurements, we estimate the time for ice to traverse Lake Vostok to be 16,000-20,000 years. We infer that most Vostok ice analysed to date was accreted to the ice sheet close to the western shoreline, and is therefore not representative of open lake conditions. From the amount of accreted lake water we estimate to be exported along the southern shoreline, the lake water residence time is about 13,300 years.  相似文献   

20.
Bintanja R  van de Wal RS 《Nature》2008,454(7206):869-872
The onset of major glaciations in the Northern Hemisphere about 2.7 million years ago was most probably induced by climate cooling during the late Pliocene epoch. These glaciations, during which the Northern Hemisphere ice sheets successively expanded and retreated, are superimposed on this long-term climate trend, and have been linked to variations in the Earth's orbital parameters. One intriguing problem associated with orbitally driven glacial cycles is the transition from 41,000-year to 100,000-year climatic cycles that occurred without an apparent change in insolation forcing. Several hypotheses have been proposed to explain the transition, both including and excluding ice-sheet dynamics. Difficulties in finding a conclusive answer to this palaeoclimatic problem are related to the lack of sufficiently long records of ice-sheet volume or sea level. Here we use a comprehensive ice-sheet model and a simple ocean-temperature model to extract three-million-year mutually consistent records of surface air temperature, ice volume and sea level from marine benthic oxygen isotopes. Although these records and their relative phasings are subject to considerable uncertainty owing to limited availability of palaeoclimate constraints, the results suggest that the gradual emergence of the 100,000-year cycles can be attributed to the increased ability of the merged North American ice sheets to survive insolation maxima and reach continental-scale size. The oversized, wet-based ice sheet probably responded to the subsequent insolation maximum by rapid thinning through increased basal-sliding, thereby initiating a glacial termination. Based on our assessment of the temporal changes in air temperature and ice volume during individual glacials, we demonstrate the importance of ice dynamics and ice-climate interactions in establishing the 100,000-year glacial cycles, with enhanced North American ice-sheet growth and the subsequent merging of the ice sheets being key elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号