首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
李型有限群G2(5)的Cartan不变量矩阵   总被引:1,自引:0,他引:1  
确定有限群的Cartan不变量矩阵是模表示理论中的一个重要研究课题。利用叶家琛1982的发表在《数学研究与评论》上的论文《SL(3,p^n)的Cartan不变量》的方法,给出了5个元素的有限域F5上李型有限群G2(5)的Cartan不变量矩阵。  相似文献   

2.
有限群的模表示论研究的一个重要方面是计算Cartan不变量 ,即它的一个不可约模在某个射影不可分解模的合成列中作为合成因子出现的重数 ,而第一Cartan不变量是最有趣又最难的一个 .利用代数群模表示理论中的一系列结果 ,并利用MATLAB数学软件 ,计算了 5 n 个元素的有限域上特殊辛群Sp(4,5 n)的第一Cartan不变量 .  相似文献   

3.
给出了Cartan不变量C(n)λ,λ′和dimUn(λ)的计算公式,并具体计算了李型有限群SL(3,5n)的第一Cartan不变量C(n)00.  相似文献   

4.
5.
计算B2=C2型有限辛群Sp(4,13)的Cartan不变量矩阵C=(cλ(1μ))λ,μ∈X1(T).  相似文献   

6.
本文主要给出Weyl模的合成因子的分解模式,以及主不可分解模的Weyl模滤过.  相似文献   

7.
确定出13个元素的有限域F13上A2型Chevalley群G(1)=SL(3,13)的Cartan不变量矩阵C=(c(1)λμ)λ,μ∈X1(T),利用MATLAB软件计算C的行列式的值是1318,符合Brauer的结论.  相似文献   

8.
设K是特征数p>0的代数闭域,G是K上G_2型单连通半单代数群,G(n)是p~n个元素的有限域Fp~n上与G同型的Chevalley群.本文主要结果:当p≥13时,p个元素的有限域FP上G_2型Chevalley群的第一Cartan不变量C_(11)=224.  相似文献   

9.
确定出A2型有限群G(1)=SL(3,11)的Caftan不变量矩阵C=(c^(1)λμ)λ,μ∈X1(T),利用MATLAB软件计算C的行列式的值是11^12,与Brauer理论所指出的结果一致.  相似文献   

10.
确定Cartan不变量是代数群与相关的李型有限群的模表示理论中的一个重要方面. 作者利用代数群模表示理论中的一系列结果, 计算了3^n个元素的有限域上特殊线性群 SL(3,3^n) 和特殊酉群 SU(3, 3^n) 的第一Cartan不变量, 得到如下结论: 当 G=SL(3, 3^n) 时, C_{00}^{(n)}= a^{n}+b^{n}+6^{n}-2\cdot 8^{n};而当 G=SU(3, 3^n) 时, C_{00}^{(n)}= a^{n}+b^{n}+6^{n}-2\cdot 8^{n}+2\cdot\left(1+(-1)^{n}\right),$$ 其中 $a,b$ 是多项式 $x^{2}-20x+48$ 的两个根. 另外, 作者也得到了射影不可分解模 $U_n(0,0)$ 的维数公式: $$ \dim U_n(0,0)=(12^n-6^n+\epsilon)\cdot3^{3n},$$ 其中, 当 $G=SL(3, 3^n)$ 时, $\epsilon=1$; 而当 $G=SU(3, 3^n)$ 时,$\epsilon=-1$.  相似文献   

11.
12.
利用广义限制李代数的概念和性质,研究Cartan型李代数L=X(m,n)(X=W,S,H)的不可约表示,给出了特征标高度h(2≤h相似文献   

13.
给出了G=Sp(4,K)时WEYL模的分解模式,给出了Sp(4,K)的WEYL模分解。  相似文献   

14.
Bin Shu 《科学通报(英文版)》1998,43(16):1336-1336
Let %L=X(m:n) (2), X∈{W,S,H,K}% be a simple graded Lie algebra of Cartan type over a field %F% of characteristic p>3. With the aid of Farnsteiner's generalized reduced Verma module, a connection between the simple GR modules and simple graded modules of L is eastablished.  相似文献   

15.
得到了当特征函数x的高度小于或等于0时,Cartan型李代数在代数封闭域k=Fq上的不可约广义x-约化表示分裂的一个充分必要条件.在Witt代数情形,对于一般的特征函数x,得到了相应的结论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号