首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
讨论有序Banach空间E中分数阶边值问题D_0~α+u(t)=f(t,u(t)), 0 t 1, u(0)=u(1)=u'(0)=u'(1)=θ正解的存在性,其中,3 α≤4,D_0~α+是标准的Riemann-Liouville微分,f:[0,1]×P→P连续,P为E中的正元锥.通过非紧性测度的估计技巧与凝聚映射的不动点指数理论获得该边值问题正解的存在性结果.  相似文献   

2.
3.
用非紧性测度估计技巧和凝聚映射的不动点指数理论,证明Banach空间中分数阶微分方程边值问题正解的存在性.  相似文献   

4.
一端简单支撑,另一端滑动的弹性梁的形变可以用四阶常微分方程两点边值问题来描述.由于其在物理中的重要性,已有许多人研究了该类问题解的存在性,但这些文献仅限于在一般空间中讨论,并且采用的方法主要是拓扑度及相关的不动点方法与上下解的单调迭代方法,而在Banach空间中只有很少的研究结果.在有序Banach空间中通过非紧性测度的估计技巧与凝聚映射的不动点指数理论,获得了四阶常微分方程两点边值问题正解的存在性结果,其结果推广和改进了一些已有结论.  相似文献   

5.
考虑有序Banach空间E中Riemann-Liouville分数阶微分方程-Dα0+u(t)=f(t,u(t))的两点边值问题正解的存在性,其中1<α≤2是实数,f:[0,1]×E→E连续.在较一般的非紧性测度条件下应用凝聚映射的不动点指数理论获得了该边值问题正解的存在性结果.  相似文献   

6.
考虑有序Banach空间E中Riemann-Liouville分数阶微分方程-Dα0+u(t)=f(t,u(t))的两点边值问题正解的存在性,其中1α≤2是实数,f:[0,1]×E→E连续.在较一般的非紧性测度条件下应用凝聚映射的不动点指数理论获得了该边值问题正解的存在性结果.  相似文献   

7.
利用不动点指数理论,在相应线性算子的第一特征值的条件下,对下面的分数阶微分方程建立了正解的存在性定理Dα0+u(t)+f(t,u(t))=0,0相似文献   

8.
有序Banach空间非线性二阶边值问题的正解   总被引:2,自引:1,他引:1  
讨论了有序Banach空间E中的非线性二阶边值问题: -u″(t)=f(t,u(t)),0≤t≤1,u(0)=u(1)=θ 正解的存在性,其中f:[0,1]&#215;K→K连续,K为E的正元锥.在较一般的条件下用新的非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正解的存在性结果.  相似文献   

9.
考虑Banach空间E中分数阶微分方程边值问题{-Dβ0+u(t)=f(t,u(t)),t∈Ju(0)=u(1)={θ解的存在性,其中1〈β≤2为实数,J=[0,1],Dβ0+是标准的Riemann-Liouville导数,f:J×E→E连续.用新的非紧性测度估计技巧,在f满足比较一般的增长条件和非紧性测度条件下通过凝聚映射的不动点定理获得了该边值问题解的存在性.  相似文献   

10.
应用Krasnosel''skii及Leggett-Williams不动点定理,研究了一类含积分边界条件的Caputo型分数阶微分方程的边值问题,得到了一个及三个正解存在的充分条件.  相似文献   

11.
考虑有序Banach空间中形如“x′=Ax+λBx+f(t,x,λ)(0≤t≤1),Px(0)=Qx(1)”的两点边值问题,给出了此类问题存在分歧点的某些充分条件.  相似文献   

12.
运用凝聚映射的不动点指数理论讨论了有序Banach空间E中的脉冲微分方程周期边问题u'(t)+Mu(t)=f(t,u(t)),t∈J,t≠tkΔut=tk=Ik(u(tk)),k=1,2,…,mu(0)=u(ω{)正解的存在性.  相似文献   

13.
利用严格集压缩映象的不动点定理讨论紧型条件下的Banach空间n点边值问题.首先将3不动点定理推广到严格集压缩映像上,而后构造泛函,利用前面证得的不动点定理证明Banach空间二阶n点边值问题3正解的存在性.最后给出例子说明结论的可行性.  相似文献   

14.
讨论了有序Banach空间E中的非线性二阶积-微分方程边值问题—u(t)=f(t,u(t),(Su)(t)),t∈I,u(0)=u'(1)=θ正解的存在性,用非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正解的存在性结果.  相似文献   

15.
讨论了一般Banach空间高阶周期边值问题解的存在性,利用非紧性测度与凝聚映射的Sadovskii不动点定理,获得了其解的存在性与唯一性结果。  相似文献   

16.
利用上下解的方法,通过Leray—Schauder不动点定理,给出非线性分数阶微分方程边值问题 正解存在的唯一性,其中3〈a≤4为实数,f:[0,1]×[0,+∞)→[0,∞)是连续的,Da0+是一个标准的RAeman—Liouvile微分.  相似文献   

17.
通过锥不动点定理,给出非线性分数阶微分方程边值问题Da0+u(t)+ f(t,u(t))=0,0<t<1 u(0)=u(1)=u’(0)=0 的正解存在性,其中2<a≤3为实数,f:[0,1]× [0,+∞)→[0,+∞)是连续的,Da0+是一个标准的Rieman-Liouvile微分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号