共查询到20条相似文献,搜索用时 0 毫秒
1.
WANG Haipeng CAO Chongde & Wei BingboDepartment of Applied Physics. Northwestern Polytechnical University Xi''''an China 《科学通报(英文版)》2004,(3)
Droplets of Ni-31.4%Pb monotectic alloy with different sizes are rapidly solidified during free fall in a drop tube. The theoretical calculations indicate that the undercooling was achieved before solidification exponentially depends on droplet diameter. The maximum undercooling of 241 K (0.15Tm) is obtained in the experiments. With the increase of undercooling, the volume fraction of monotectic cells increases, and the L2(Pb) grains are refined. Calculations of the nucleation rates of L2(Pb) and a-Ni phases indicate that L2(Pb) phase acts as the leading nucleation phase during the monotectic transformation. 相似文献
2.
SONG Xianzheng WANG Haipeng RUAN Ying WEI Bingbo 《科学通报(英文版)》2006,51(8):897-901
Dendritic growth is one of the most common micro-structural formation mechanisms during crystal growth. Its morphology provides the kinetics information of crystal growth. Therefore, it is valuable to perform the research on rapid dendrite growth in order… 相似文献
3.
LI Li LU XiaoYu CAO ChongDe & DAI FuPing Department of Applied Physics Northwestern Polytechnical University Xi’an China 《科学通报(英文版)》2010,55(16):1674-1678
Solidification of Fe-7.5%Mo-16.5%Si ternary quasiperitectic alloy is investigated by using differential scanning calorimetry (DSC) and drop tube containerless processing techniques.The primary phase is identified as R (Fe5Mo3Si2) and the quasiperitectic phases are τ1 (Fe5MoSi4) and Fe3Si.With the decrease of droplet diameter, the cooling rate and undercooling of the droplets in-crease rapidly.The experiment result indicates that the solidification microstructure is composed of remnant primary phase, qua-sip... 相似文献
4.
Droplets of Cu-20%Sb hypoeutectic alloy has been rapidly solidified in drop tube within the containerless condition. With the decrease of droplet diameter, undercooling increases and the microstructures of primary copper dendrite refines. Undercooling up to 207 K (0.17 T L) is obtained in experiment. Theoretic analysis indicated that because of the broad temperature range of solidification, the rapid growth of primary copper dendrite is controlled by the solutal diffusion. Judging from the calculation of T0 curve in the phase diagram, it is shown that the critical undercooling of segregationless solidification is δT 0 = 474 K. At the maximum undercooling of 207 K, the growth velocity of primary copper phase exceeds to 37 mm/s, and the distinct solute trapping occurs. 相似文献
5.
Bulk samples of Cu-80%Pb hypermonotectic alloy were undercooled by up to 270 K (0.21 TL) with glass fluxing technique. The undercooling behavior and the final microstructure were investigated experimentally. It was found that the macrosegregation decreased with the increase of undercooling exponentially. When undercooling reached 270 K, the volume fraction of macrosegregation was reduced by one order of magnitude. Meanwhile, high undercooling brought about significant changes to the microstructural morphology of S(Cu) phase. At small undercoolings, S(Cu) phase grew in dendritic manner. As undercooling increased, S(Cu) dendrite transformed gradually to spherical shell. This morphology transition was ascribed to the concurrent action of the phase separation within miscibility gap and the subsequent solidification process of L2 (Pb) matrix. As an essential step to model the final microstructure, theoretical calculations related to the nucleation of L1 (Cu) droplets were carried out. 相似文献
6.
Liquid Ni-31.7%Sn-2.5%Ge alloy was highly undercooled by up to 238 K(0.17TL) with glass fluxing and drop tube techniques.The dendritic growth velocity of primary Ni3Sn compound shows a power-law relation to undercooling and achieves a maximum velocity of 380 mm/s.The addition of Ge reduces its growth velocity as compared with the binary Ni75Sn25 alloy.A structural transition from coarse dendrites into equiaxed grains occurs once undercooling exceeds a critical value of about 125 K,which is accompanied by both grain refinement and solute trapping.The Ni3Sn intermetallic compound behaves like a normal solid solution phase showing nonfaceted growth during rapid solidification. 相似文献
7.
朱建华 《太原科技大学学报》2012,33(4):286-290
研究了不同转速的旋转磁场对Pb-Bi合金凝固组织的影响,对于Pb-52%Bi亚共晶,旋转磁场能碎断枝晶,细化晶粒;对于Pb-66%Bi过共晶,旋转磁场能消除比重偏析。另外,采用硅油净化法结合水淬使Pb-52%Bi亚共晶和Pb-60.9%Bi过共晶分别获得了47 K和66 K的较大过冷度,对于Pb-52%Bi亚共晶,金属间化合物ε相枝晶细化显著;对于Pb-60.9%Bi过共晶,组织中没出现初生相Bi,只有细密的共晶组织。对于Pb-52%Bi亚共晶在快速凝固的同时加旋转磁场,过冷度由47 K增大为55 K,ε相呈细小颗粒弥散分布。 相似文献
8.
A large undercooling (250 K) was achieved in eutectic Ni78.6Si21.4 melt by the combination of molten-glass denucleation and cyclic superheating. The metastable phase formation process in the bulk undercooled eutectic Ni78.6Si21.4 melts was investigated. With the increase of undercooling, different metastable phases form in eutectic Ni78.6Si21.4 melts and part of these metastable phases can be kept at room temperature through slow post-solidification. Under large undercooling, the metastable phases β2-Ni3Si, Ni31Si12 and Ni3Si2 were identified. Especially, the Ni3Si2 phase was obtained in eutectic Ni78.6Si21.4 alloy for the first time. Based on the principle of free energy minimum and transient nucleation theory, the solidification behavior of melts was analyzed with regard to the metastable phase formation when the melts were in highly undercooled state. 相似文献
9.
A large undercooling (250 K) was achieved in eutectic Ni78.6Si21.4 melt by the combination of molten-glass denucleation and cyclic superheating. The metastable phase formation process in the bulk undercooled eutectic Ni78.6Si21.4 melts was investigated. With the increase of undercooling, different metastable phases form in eutectic Ni78.6Si21.4 melts and part of these metastable phases can be kept at room temperature through slow post-solidification. Under large undercooling, the metastable phases β2-Ni3Si, Ni31Si12 and Ni3Si2 were identified. Especially, the Ni3Si2 phase was obtained in eutectic Ni78.6Si21.4 alloy for the first time. Based on the principle of free energy minimum and transient nucleation theory, the solidification behavior of melts was analyzed with regard to the metastable phase formation when the melts were in highly undercooled state. 相似文献
10.
RUAN Ying DAI FuPing WEI BingBo 《科学通报(英文版)》2007,52(19):2630-2635
Rapid growth behavior of ζ phase has been investigated in the undercooling experiments of Cu-14%Ge, Cu-15%Ge, Cu-18.5%Ge and Cu-22%Ge alloys. Alloys of the four compositions obtain the maximum undercoolings of 202 K(0.17TL), 245 K(0.20TL), 223 K(0.20TL) and 176 K(0.17TL), respectively. As the content of Ge increases, the microstructural transition of "a(Cu) dendrite + ζ" peritectic phase → ζ" peritectic phase →, ζ dendrite + (ε+ζ) eutectic" takes place in the alloy at small undercooling, while the microstructural transition of "fragmented α (Cu)dendrite + ζ peritectic phase →, ζ peritectic phase →ζ dendrite + ε phase" happens in the alloy at large undercooling. EDS analysis of the Ge content in peritectic phase indicates that undercooling enlarges the solid solubility of ζ rdendrite, which leads to a decrease in the Ge content in ζ phase as undercooling increases. In the Cu-18.5%Ge alloy composed of ζ peritectic phase, the Ge content in ζ phase increases when undercooling increases, which is due to the restraint of the Ge enrichment on the grain boundaries by high undercooling effect. 相似文献
11.
《科学通报(英文版)》2007,(19)
Rapid growth behavior of ■ phase has been investigated in the undercooling experiments of Cu-14%Ge, Cu-15%Ge, Cu-18.5%Ge and Cu-22%Ge alloys. Alloys of the four compositions obtain the maximum undercoolings of 202 K(0.17TL), 245 K(0.20TL), 223 K(0.20TL) and 176 K(0.17TL), respectively. As the content of Ge increases, the microstructural transition of "α (Cu) dendrite ■ peritectic phase →■ peritectic phase →■ dendrite (ε ■ ) eutectic" takes place in the alloy at small undercooling, while the microstructural transition of "fragmented α (Cu) dendrite ■ peritectic phase →■peritectic phase →■ dendrite ε phase" happens in the alloy at large undercooling. EDS analysis of the Ge content in ■ peritectic phase indicates that undercooling enlarges the solid solubility of α dendrite, which leads to a decrease in the Ge content in ■ phase as undercooling increases. In the Cu-18.5%Ge alloy composed of ■ peritectic phase, the Ge content in ■ phase increases when undercooling increases, which is due to the restraint of the Ge enrichment on the grain boundaries by high undercooling effect. 相似文献
12.
通过改变试样质量和冷却规范,研究了过冷Cu-30%Ni(原子分数)单相合金在不同凝固时间下的组织转变规律.在实验所选择的几秒到数分的凝固时间内,均于较低的过冷度范围和高过冷度下观察到了粗大树枝晶向细小等轴晶的转变.延长凝固时间,晶粒发生细化的两个过冷度区间扩大.对低过冷度下细化组织进行的考察表明,快速凝固刚结束时,细化晶粒仍具有树枝晶的特征,随缓凝阶段持续时间的延长,晶粒逐步蜕化为球状晶和蠕虫状晶,与此同时,晶粒度以幂函数规律重新增大.过冷熔体快速凝固使初生固相含有过饱和的低熔点组元以及较多的晶体缺陷,最终导致快速凝固结束后形成的细小晶粒在缓凝阶段的重新粗化速度明显快于正常凝固过程中晶体的粗化速度. 相似文献
13.
为指导2,4-二硝基苯甲醚(DNAN)基熔铸炸药凝固工艺优化设计,采用自制的多点加压凝固测试装置测试DNAN在0.6、0.3 MPa和常压下凝固过程的温度变化和凝固速率,用工业CT和扫描电镜观测试样的缺陷分布情况,用密度仪测试试样的装药密度。试验结果显示:随着压力的升高,DNAN的过冷度和凝固速率均逐渐增大;在DNAN装药体中,凝固产生的体积收缩更多集中于装药体上部,而装药体下部中的弥散性缺陷得到显著降低;DNAN晶粒生长的有序度得到提高,晶粒间空隙逐渐减少,装药相对密度由95.1%提高到了96.7%。上述研究表明,压力作用对DNAN的凝固过程影响较为明显,施加较低的压力即可有效提升装药质量。 相似文献
14.
A large undercooling (250 K) was achieved in eutectic Ni78.6 Si21.4 melt by the combination of molten-glass denucleation and cyclic superheating. The metastable phase formation process in the bulk undercooled eutectic Ni78.6 Si21.4 melts was investigated. With the increase of undercooling, different metastable phases form in eutectic Ni78.6 Si21.4 melts and part of these metastable phases can be kept at room temperature through slow post-solidification. Under large undercooling, the metastable phases β2-Ni3Si, Ni31Si12 and Ni3Si2 were identified. Especially, the Ni3Si2 phase was obtained in eutectic Ni78.6 Si21.4 alloy for the first time. Based on the principle of free energy minimum and transient nucleation theory, the solidification behavior of melts was analyzed with regard to the metastable phase formation when the melts were in highly undercooled state. 相似文献
15.
Abstract Dendritic growth in Al-45% Ge hypoeutectic alloy has been investigated during free fall in a 3 m drop tube. Calculationsindicate that the undercooling obtained for the falling Al-45% Ge droplets ranges from 13 K to 201 K. The maximum undercooling attains0. 27 T_L. With the increase of undercooling, the primary (Al) phase undergoes a \"columnar dendrite to equiaxed dendrite\" structural tran-sition. According to the current rapid dendritic growth theory, the growth of primary (Al) phase is always controlled by solute diffusion. 相似文献
16.
GUANWanbing GAOYulai ZHAIQijie XUKuangdi 《科学通报(英文版)》2005,50(9):929-931
In this paper, the influence of cooling rate on the undercooling of droplet solidification of metal melt has been investigated by employing the differential scanning calorimetry (DSC) method. The effect of cooling rate on the undercooling as well as its change tendency is analyzed theoretically. It is shown that the undercooling degree increases whereas the change rate of undercooling decreases with increasing cooling rate. Moreover, the change tendency approaches zero when the cooling rate exceedingly increased, indicating that an extremum of undercooling exists with increasing cooling rate. 相似文献
17.
By cyclic superheating incorporated with glass fluxing denucleation method the Fe^B^Si, eutectic alloy was undercooled up to A T = 342 K. The relations between recalescence behavior and solidification structures were systematically studied in the undercooling range of 6—342 K. Two critical undercoolings were observed: mixed eutectic was the unique growth morphology when the undercooling was less than A Ti =63 K; but the microstructure transformed to complete undercooled anomalous eutectic when the undercooling was greater than AT2 = 164 K. The two eutectic phases a(Fe,Si) and Fe^B conformed to the non-reciprocal nucleation effect. The boundary of the coupled zone of a (Fe,Si)-Fe2B system shifted toward the Fe^B side, and intersected the eutectic composition line at A71 = 154 K and A71 = 264 K, whose valley was at about AT = 207 K. 相似文献
18.
WANG Haipeng & WEI Bingbo Department of Applied Physics Northwestern Polytechnical University Xi’an China 《科学通报(英文版)》2005,50(10):945-949
The thermophysical properties of liquid alloys in me-tastable state are of importance for liquid-solid phase transformation under nonequilibrium conditions[1―10]. Sur-face tension and specific heat, two of the most important thermophysical properties, have significant influences on the process of crystal nucleation and growth. Furthermore, it is necessary to obtain these data so as to perform quan-titative research on rapid solidification[3―10]. The tradi-tional measurement methods, however,… 相似文献
19.
Under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. In this work, rapid solidification of an undercooled liquid Al80.4Cu13.6Si6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating. The relationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt. The maximum undercooling is 147 K (0.18T E). The undercooled ternary eutectic is composed of α(Al) solid solution, (Si) semiconductor and θ(CuAl2) intermetallic compound. In the (Al+Si+θ) ternary eutectic, (Si) faceted phase grows independently, while (Al) and θ non-faceted phases grow cooperatively in the lamellar mode. When undercooling is small, only (Al) solid solution forms as the leading phase. Once undercooling exceeds 73 K, (Si) phase nucleates firstly and grows as the primary phase. The alloy microstructure consists of primary (Al) dendrite, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling, while at large undercooling primary (Si) block, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic coexist. As undercooling increases, the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and the Doctorate Foundation of Northwestern Polytechnical University (Grant No. CX200419) 相似文献
20.
The solidification and glass forming ability of Zr41Ti14Cu12.5Ni10Be22.5 bulk glassy forming alloy is investigated by Bridgman unidirectional solidification at different growth velocities under different gravity field orientations. Large differences in glass formation, undercooling and crystallization morphology on different solidification conditions have been found and discussed from the point of view of gravity induced convection. The results are useful for understanding the nucleation and growth in the melt and glass formation mechanism in the alloy. 相似文献