首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
软组织的生物力学特性   总被引:5,自引:0,他引:5  
生物软组织的力学特性, 主要指的是黏弹性特性. 这种黏弹性特性已广泛应用于生物体的基础研究, 如眼角膜、肺、心瓣膜和血管等. 随着组织工程的研究进展, 组织工程产生的软组织黏弹性的确定是评定组织工程成败的关键所在. 对生物软组织黏弹性的特性进行了研究, 从归一化松弛函数G(t)和归一化蠕变函数J(t)中分别解出参数τ1, τ2c, 在求解J(t)中, 借助Whittaker函数给出指数积分函数E1 (x)近似幂级数展开式. 最后以扩张皮肤为例, 分别研究其蠕变、松弛和大变形的应力-应变关系.  相似文献   

2.
证明了迹极限A=(t4)lim (An,Pn)的情况下,对任意的n∈N,K0(An)统一的生成结构可以过渡到K0(A)上来;如果K1(An)的自然生成映射是满的, 则K1(A)的生成映射也是满的.  相似文献   

3.
用单边缺口试样研究了电场、应力和环境对极化PZT-5铁电陶瓷断裂的耦合作用; 即研究了电场对断裂韧性和硅油中应力腐蚀门槛值的影响, 以及应力对恒电场下滞后断裂门槛电场的影响. 结果表明, 在硅油中加正、负电场均能发生滞后断裂, 电致滞后断裂门槛电场EDF大约是电致瞬时断裂临界电场EF的70%. 正、负电场均使断裂韧性KIC下降, 归一化表观断裂韧性KIC(E)/KIC随归一化电场E/EF线性下降, 且和电场符号无关, 即KIC(E)/KIC=0.965−0.951E/EF. 正、负电场均使硅油中应力腐蚀门槛应力强度因子KISCC下降, 归一化应力腐蚀表观门槛值KISCC(E)/KISCC随归一化电场E/EDF线性下降, 且和电场符号无关, 即KISCC(E)/KISCC=1.05−1.01E/EDF. 外应力能使正、负恒电场引起的电致滞后断裂门槛电场EDF下降, 归一化门槛电场EDF(KI)/EDF随归一化应力强度因子KI/KISCC线性下降, 即EDF(KI)/EDF=0.988−1.06KI/KISCC.  相似文献   

4.
用两种算法研究汤川势V(r) = -λexp(-αr)/r的束缚态: 一种是用解Schrödinger方程数值计算方法, 另一种是我们提出的Monte Carlo-Hamiltonian法. 此系统有一临界参数α=αc, 大于此值系统就不存在束缚态. 我们研究αcλ和角动量量子数l的依赖关系, 发现在原子单位下, αc(l) =λ[A1exp(-l/B1) + A2(-l/B2)], 其中A1= 1.020(18), B1 = 0.443(14), A2 = 0.170(17), B2 = 2.490(180).  相似文献   

5.
用粗糙面上方有目标和无目标时空间散射场的差值计算雷达散射截面, 称为差场雷达散射截面. 推导了 TE波入射时粗糙表面上介质目标表面的感应电流J o和感应磁流 Ko、导体粗糙面上差值感应电流 Jsd的积分方程, 直接求解散射差场Esd, 而无需对有无目标两种情况分别求解. 目标表面的积分方程中需要计算目标所在位置处单独由粗糙面贡献的散射场 Es0, 它主要来自对准目标的镜面方向上的一小段粗糙面的贡献, 此时选取的小段粗糙面减小了计算量. 提出目标与粗糙面散射差场积分方程互耦迭代的求解方法. 由于理想导体粗糙面的强镜面散射特性, 在该迭代计算中的粗糙面的长度与观测散射角有关, 给出了它们之间的解析关系式, 此时选取的粗糙面长度远小于现有的方法, 特别适于低掠角问题. 结合 Monte Carlo 法, 迭代计算了 P-M谱(Pierson-Moskowitz)导体粗糙海面上方不同介质材料的圆柱和方柱目标的差场散射, 并与理想导体柱的散射进行比较. 讨论了介质目标上感应电流、感应磁流, 以及粗糙面上的差值感应电流的分布, 目标差场散射的峰值特征等.  相似文献   

6.
纳米单相NdFeB永磁材料的有效各向异性和矫顽力   总被引:1,自引:0,他引:1  
研究了纳米Nd2Fe14B永磁材料中晶粒交换耦合相互作用对磁体有效各向异性的影响和变化规律. 结果表明, 晶粒间交换耦合相互作用使材料的有效各向异性常数Keff随晶粒尺寸的减小而逐渐下降, Keff随晶粒尺寸的变化与矫顽力的变化规律相似. 纳米单相永磁材料有效各向异性的减小是矫顽力降低的主要原因. 为保证纳米NdFeB永磁材料具有需要的各向异性和矫顽力, 晶粒尺寸应不小于35 nm.  相似文献   

7.
考虑LiF绝缘缓冲层对电子注入势垒的影响, 给出了LiF/金属复合电极注入势垒的表达式; 基于载流子的注入和复合过程, 建立了双层有机电致发光器件发光效率的理论模型; 讨论了器件效率随电压、注入势垒、内界面势垒、有机层厚度的变化关系. 结果表明: (ⅰ) 当δe/δh < 2时, 金属/有机物(M/O)界面属于欧姆接触, 当δe/δh = 2时, M/O界面成为接触限制, 当δe/δh = 2(Φh ≈ 0.2 eV, Φe ≈ 0.3 eV)时, M/O界面存在从欧姆接触向接触限制的转变; (ⅱ) ηELδ'e/δ'h的增大而减小, 但δ'e/δ'h>2.5 (H'h ≈0.2 eV,H'e >0.4 eV), ηEL的变化趋势变得平缓, 这时载流子注入对器件的ηEL起支配作用; (ⅲ) 逐渐增加Lh/L比值, 较低电压下hR呈下降趋势, 较高电压下ηR则呈上升趋势. 当电压超过启动电压后, 对于给定的Lh/L, 随电压的增大, ηEL是先增加后降低, 且随着Lh/L的增加, ηEL的这种变化趋势更加明显. 这些都与报道的理论及实验结果相符.  相似文献   

8.
东海黄海渤海8个主要分潮的数值模拟   总被引:12,自引:3,他引:9  
应用球面坐标系下ECOM数值模式,数值模拟了东海黄海渤海的8个主要分潮M2、S2、N2、K2、K1、O1、P1和Q1.采用高分辨率网格,计算区域包括东海黄海渤海、东海陆架坡和琉球以东西北太平洋,考虑实际水深和岸线.开边界条件由全球大洋潮汐模式计算的调和常数给出.较成功地模拟出了8个分潮的传播特征,再现了计算区域内半日分潮的5个无潮点和2个蜕化的半个无潮点、全日分潮的3个无潮点.与65个潮位站的观测资料比较,模式计算的M2、S2、K1和O1分潮振幅和位相的均方差分别为7.85 cm和6.81°,5.04cm和8.14°,3.82cm和13.04°,4.34cm和9.33°.与17个潮位站的观测资料比较,N2、K2、P1和Q1分潮振幅和位相的均方差分别为3.64cm和7.89°,8.47cm和10.51°,1.76cm和7.56°,1.50cm和26.34°.模式模拟的结果可为河口海岸小区域模式提供较为可靠的外海开边界潮汐调和常数资料.  相似文献   

9.
 提出了一种基于CCCII的n阶电流模式跳耦结构滤波器系数匹配设计方法.通过定义一个从滤波器的输入到第j阶积分器输出的传输函数Hj(s)(Io(j)/Iin),可以方便地求出全极点和含任意传输零点的跳耦结构滤波器的传输函数H(s),并与给定的传输函数Hd(s)的分子、分母系数进行匹配,从而求出滤波器的各个参数.该方法使滤波电路参数设计简单容易,并以四阶巴特沃斯低通跳耦结构滤波器为例进行了参数设计和PSPICE模拟.  相似文献   

10.
在迹极限的意义下, 特别是在单代数的条件下, 研究某些C*-代数性质的封闭性.假设A=(t2)limn -> ∞ (An,pn), An上至少有一个迹态或An,具有(SP) 性质,则A也有相同的结果;假设A=(t3)limn -> ∞ (An,pn),并且A是单代数,如果\TR(An)=0,tsr(An)=1和An具有投影消去律,则A也有相同的结果.  相似文献   

11.
用极值法推导了双原子分子的离解能De与振动光谱常数之间的解析关系式, 其结果与Rees表达式相同;并得到了包含高阶的ω eze 在内的非谐性振动常数同离解能之间的一般解析式. 对于包含更高阶非谐性振动常数的情形, 也可以由求解数值极值得到离解能. 对OH, BH, N2, Br2, ClF和CO等体系一些电子态的研究表明, 若电子态的振动光谱常数的收敛性较好, 则用极值法求得的离解能的误差随着所用光谱常数的数目的增加而减小. 极值法从理论上给出了获得离解能精确数值的一种方法. 建议用离解能的收敛性质作为判别振动光谱常数良莠的一种物理标准, 用于分析不同研究工作获得的同一双原子分子稳定电子态体系的不同振动光谱常数集合的优劣.  相似文献   

12.
利用准第一原理原子间相互作用势对Y2Fe17-xCrx的结构进行了原子级模拟. 并研究了Cr原子在Y2Fe17结构中的择优占位行为, 结果表明Cr原子择优占据4f,12j晶位. 在Cr原子择优代位的基础上, 详细计算了Y2Fe17-xCrx的晶体结构, 原子晶位和晶格常数, 这些都与实验结果吻合很好. 进一步计算了弛豫结构的态密度, 并利用自旋波理论对居里温度的先升后降的行为进行定性解释. 上述结果表明了第一原理原子间相互作用势在研究此类化合物的有效性.  相似文献   

13.
神经元Chay模型中不同类型的簇放电模式   总被引:1,自引:0,他引:1  
基于神经元放电活动中具有不同性质的簇放电类型的特点, 通过神经元Chay模型, 应用快慢动力学分岔分析方法, 并根据位于快变子系统分岔曲线上支的与相应于放电状态的稳定极限环产生有关的Hopf分岔点的数量的不同, 分别研究了当K+离子的可逆电位VK, Ca2+离子的可逆电位VC, 时间动力学常数λn以及外界直流电I作为可变参数时, 神经元Chay模型的簇放电模式的动力学性质及其所属的不同类型.  相似文献   

14.
带电杂质对磁场中3个电子量子点的影响   总被引:1,自引:0,他引:1  
研究了在磁场B中受杂质影响的二维3个电子量子点基态的特性. 杂质被固定在z轴上且与量子点平面的距离为d. 计算了基态角动量L0和自旋S0Bd的演化, 归纳结果于(L0, S0)相图中, 而且探讨了电子的空间分布(量子点的大小、几何结构)和光吸收. (L0, S0)图表明: 当d和(或)B变化时, L0S0能够发生跃迁. 我们发现由于对称性限制, 每种对称几何结构只能访问具有特定L0S0的一组态.  相似文献   

15.
利用动力学Lie代数方法研究了非对称线型四原子分子高激发振动能谱, 由四原子分子所满足的对称性U1(4)Ä U2(4) ÄU3(4), 得到了四原子分子的代数Hamiltonian. 通过代数方法求得分子代数Hamiltonian的本征值, 从而得到了四原子分子的振动能谱. 在该Hamiltonian中, 不仅包含了Casimir算子, 而且包含了Majorana算子M12, M13M23, 这为从Lie代数理论出发, 求四原子分子的势能面和力常数提供了必要的前提. 最后具体计算了C2HF分子.  相似文献   

16.
研究了二维Coulomb散射的对称性和|m|分波分析. 作为能量E的函数, 把|m|分波散射波幅f |m|(q)解析延拓到负E(复k)平面, 发现束缚能量本征值(E < 0)恰好位于f|m|(q)在正虚k轴上的极点. 此外, 作为|m|的函数, 把f|m|(q)解析延拓到复|m|平面, 发现束缚能量本征值正好处于f |m|(q )在正实|m|轴上的极点.  相似文献   

17.
各向同性张量函数的导数   总被引:1,自引:0,他引:1  
各向同性张量函数的导数是连续介质力学和计算力学等领域中重要而且需进一步完善的问题. 利用张量函数所对应的标量响应函数fi, I1, I2)和张量方程的求解, 较彻底地解决了各向同性张量函数的求导问题. 给出了不需计算任何系数和特征向量的简洁张量导数公式, 所给公式适用于任意对称各向同性张量函数在分别具有不同和相同特征根情况. 另外, 在理论方面, 还获得了一类张量方程特别简洁形式的解. 作为在连续介质力学方面的应用, 得到了Hill应变张量时间导数的不变性表示公式, 从而大大简化了已有的结果. 最后通过对张量指数函数导数的实例计算, 充分证明了本文公式的有效性.  相似文献   

18.
利用在束γ谱学方法, 通过124Sn (7Li, α2n)反应研究了125Sb的激发态, 首次建立了125Sb的高自旋能级纲图, 其中包括21条新 γ 跃迁和14个新能级. 发现1970, 2110和2470 keV 3个能级为同质异能态, 基于延迟符合测量确定了它们的寿命范围, 并确定其自旋、宇称分别为15/2-, 19/2-和23/2+. 根据粒子-核芯耦合图像和经验壳模型计算解释了125Sb的能级结构, 3个同质异能态的组态分别被指定为πg7/2 Äv(h11/2s1/2)5- , πg7/2 Ä v(h11/2d3/2)7-, 和πg7/2 Äv(h211/2)10+  相似文献   

19.
用奇异值分解和全局非线性拟合的方法处理全反式胡萝卜醛(all-trans-β-Apo-8′-carotenal)的飞秒时间分辨瞬态吸收光谱. 以串行激发态弛豫动力学反应为模型, 分别得到其在非极性溶剂正己烷和极性溶剂甲醇中的各个高激发态组分的吸收光谱和其各自的时间动力学特性, 在正己烷中主要得到3个电子态能级, 它们分别是S3(170 fs), S2(2.32 ps)和S1(26 ps), 而在甲醇中只得到两个能级, 分别为S2(190 fs)和S1(9.4 ps). 比较发现胡萝卜醛在甲醇中的瞬态吸收光谱红移, 且S1态寿命变短, 经分析认为是C==O基团的作用. 同时表明SVD方法是处理飞秒时间分辨瞬态吸收光谱有效的工具.  相似文献   

20.
研究了含杂质三量子位Heisenberg XXX链中的纠缠现象, 并给出了纠缠C的解析表达式. 结果发现对杂质格点与正常格点间的纠缠, C只存在于J1 > J(当J > 0时)和J1 > 0(当J < 0时)两个区域, 且在这两个区域内纠缠C和纠缠存在的临界温度Tc均随着J1的增大而增大; 当J1 >> | J |时, C = 0.5, Tc = 3.41448 J1. 对正常格点间的纠缠, C只存在于J > 0且-2 J < J1 < J, 在该区域内随着J1的增大, 纠缠C和纠缠存在的临界温度Tc均先增大而后逐渐减小为零, 当J1 = 0时它们分别达到最大值Cmax = (e4J/T - 3)/(e4J/T + 3)和Tcmax = 4J/ln3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号