首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process. Phage-mediated transfer of host genes--often located in genome islands--has had a major impact on microbial evolution. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts. Here we investigate whole-genome expression of a host and phage, the marine cyanobacterium Prochlorococcus MED4 and the T7-like cyanophage P-SSP7, during lytic infection, to gain insight into these co-evolutionary processes. Although most of the phage genome was linearly transcribed over the course of infection, four phage-encoded bacterial metabolism genes formed part of the same expression cluster, even though they are physically separated on the genome. These genes--encoding photosystem II D1 (psbA), high-light inducible protein (hli), transaldolase (talC) and ribonucleotide reductase (nrd)--are transcribed together with phage DNA replication genes and seem to make up a functional unit involved in energy and deoxynucleotide production for phage replication in resource-poor oceans. Also unique to this system was the upregulation of numerous genes in the host during infection. These may be host stress response genes and/or genes induced by the phage. Many of these host genes are located in genome islands and have homologues in cyanophage genomes. We hypothesize that phage have evolved to use upregulated host genes, leading to their stable incorporation into phage genomes and their subsequent transfer back to hosts in genome islands. Thus activation of host genes during infection may be directing the co-evolution of gene content in both host and phage genomes.  相似文献   

2.
Sullivan MB  Waterbury JB  Chisholm SW 《Nature》2003,424(6952):1047-1051
Prochlorococcus is the numerically dominant phototroph in the tropical and subtropical oceans, accounting for half of the photosynthetic biomass in some areas. Here we report the isolation of cyanophages that infect Prochlorococcus, and show that although some are host-strain-specific, others cross-infect with closely related marine Synechococcus as well as between high-light- and low-light-adapted Prochlorococcus isolates, suggesting a mechanism for horizontal gene transfer. High-light-adapted Prochlorococcus hosts yielded Podoviridae exclusively, which were extremely host-specific, whereas low-light-adapted Prochlorococcus and all strains of Synechococcus yielded primarily Myoviridae, which has a broad host range. Finally, both Prochlorococcus and Synechococcus strain-specific cyanophage titres were low (< 10(3) ml(-1)) in stratified oligotrophic waters even where total cyanobacterial abundances were high (> 10(5) cells x ml(-1)). These low titres in areas of high total host cell abundance seem to be a feature of open ocean ecosystems. We hypothesize that gradients in cyanobacterial population diversity, growth rates, and/or the incidence of lysogeny underlie these trends.  相似文献   

3.
Avrani S  Wurtzel O  Sharon I  Sorek R  Lindell D 《Nature》2011,474(7353):604-608
Prochlorococcus cyanobacteria are extremely abundant in the oceans, as are the viruses that infect them. How hosts and viruses coexist in nature remains unclear, although the presence of both susceptible and resistant cells may allow this coexistence. Combined whole-genome sequencing and PCR screening technology now enables us to investigate the effect of resistance on genome evolution and the genomic mechanisms behind the long-term coexistence of Prochlorococcus and their viruses. Here we present a genome analysis of 77 substrains selected for resistance to ten viruses, revealing mutations primarily in non-conserved, horizontally transferred genes that localize to a single hypervariable genomic island. Mutations affected viral attachment to the cell surface and imposed a fitness cost to the host, manifested by significantly lower growth rates or a previously unknown mechanism of more rapid infection by other viruses. The mutant genes are generally uncommon in nature yet some carry polymorphisms matching those found experimentally. These data are empirical evidence indicating that viral-attachment genes are preferentially located in genomic islands and that viruses are a selective pressure enhancing the diversity of both island genes and island gene content. This diversity emerges as a genomic mechanism that reduces the effective host population size for infection by a given virus, thus facilitating long-term coexistence between viruses and their hosts in nature.  相似文献   

4.
Hassan F  Kamruzzaman M  Mekalanos JJ  Faruque SM 《Nature》2010,467(7318):982-985
Bacterial chromosomes often carry integrated genetic elements (for example plasmids, transposons, prophages and islands) whose precise function and contribution to the evolutionary fitness of the host bacterium are unknown. The CTXφ prophage, which encodes cholera toxin in Vibrio cholerae, is known to be adjacent to a chromosomally integrated element of unknown function termed the toxin-linked cryptic (TLC). Here we report the characterization of a TLC-related element that corresponds to the genome of a satellite filamentous phage (TLC-Knφ1), which uses the morphogenesis genes of another filamentous phage (fs2φ) to form infectious TLC-Knφ1 phage particles. The TLC-Knφ1 phage genome carries a sequence similar to the dif recombination sequence, which functions in chromosome dimer resolution using XerC and XerD recombinases. The dif sequence is also exploited by lysogenic filamentous phages (for example CTXφ) for chromosomal integration of their genomes. Bacterial cells defective in the dimer resolution often show an aberrant filamentous cell morphology. We found that acquisition and chromosomal integration of the TLC-Knφ1 genome restored a perfect dif site and normal morphology to V.?cholerae wild-type and mutant strains with dif(-) filamentation phenotypes. Furthermore, lysogeny of a dif(-) non-toxigenic V.?cholerae with TLC-Knφ1 promoted its subsequent toxigenic conversion through integration of CTXφ into the restored dif site. These results reveal a remarkable level of cooperative interactions between multiple filamentous phages in the emergence of the bacterial pathogen that causes cholera.  相似文献   

5.
psbA genes indicate common ancestry of prochlorophytes and chloroplasts   总被引:6,自引:0,他引:6  
C W Morden  S S Golden 《Nature》1989,337(6205):382-385
It has long been suspected that chloroplasts evolved after an endosymbiotic event involving a photosynthetic prokaryote, presumably a cyanobacterium, and a eukaryotic organism. Recent studies have provided strong evidence about the cyanobacterial nature of chloroplasts. Since the discovery of prochlorophytes, oxygen-evolving photosynthetic prokaryotes containing chlorophyll a and chlorophyll b and lacking phycobiliproteins, there has been speculation that these represent evolutionary intermediates between cyanobacteria and chloroplasts. Prochloron sp., the first described prochlorophyte, proved difficult to work with because it is an obligate symbiont of marine ascidians. Prochlorothrix hollandica, a recently isolated, freshwater filamentous prochlorophyte, is easily maintained in the laboratory. Overall pigment composition and thylakoid membrane structure of P. hollandica suggest it has intermediate characteristics between cyanobacteria and the chloroplasts of higher plants. The P. hollandica psbA genes, which encode the photosystem II thylakoid protein D1, were cloned and sequenced and the sequences compared to those reported for cyanobacteria, a green alga, a liverwort, and several higher plants. The two psbA genes present in P. hollandica encode an identical amino-acid sequence. As in all chloroplast psbA genes, there is a seven amino-acid gap near the C terminus of the derived protein relative to the protein predicted by cyanobacterial genes, suggesting that P. hollandica is part of the lineage that led to chloroplasts after a divergence from cyanobacteria. This hypothesis is also supported by phylogenetic analysis of derived D1 amino-acid sequences from psbA genes of thirteen taxa on the basis of parsimony.  相似文献   

6.
Viruses, and more particularly phages (viruses that infect bacteria), represent one of the most abundant living entities in aquatic and terrestrial environments. The biogeography of phages has only recently been investigated and so far reveals a cosmopolitan distribution of phage genetic material (or genotypes). Here we address this cosmopolitan distribution through the analysis of phage communities in modern microbialites, the living representatives of one of the most ancient life forms on Earth. On the basis of a comparative metagenomic analysis of viral communities associated with marine (Highborne Cay, Bahamas) and freshwater (Pozas Azules II and Rio Mesquites, Mexico) microbialites, we show that some phage genotypes are geographically restricted. The high percentage of unknown sequences recovered from the three metagenomes (>97%), the low percentage similarities with sequences from other environmental viral (n = 42) and microbial (n = 36) metagenomes, and the absence of viral genotypes shared among microbialites indicate that viruses are genetically unique in these environments. Identifiable sequences in the Highborne Cay metagenome were dominated by single-stranded DNA microphages that were not detected in any other samples examined, including sea water, fresh water, sediment, terrestrial, extreme, metazoan-associated and marine microbial mats. Finally, a marine signature was present in the phage community of the Pozas Azules II microbialites, even though this environment has not been in contact with the ocean for tens of millions of years. Taken together, these results prove that viruses in modern microbialites display biogeographical variability and suggest that they may be derived from an ancient community.  相似文献   

7.
构建T7噬菌体展示禽流感病毒抗原变异性基因片段文库. 首先, 从Gene Bank中查找筛选禽流感病毒抗原变异性基因, 将其截短、 修饰、 简并后得到禽流感病毒抗原变异性基因微阵列. 其次, 将合成的禽流感病毒抗原变异性基因片段文库扩增、 酶切, 链接到双酶切后的T7噬菌体载体基因上, 构成重组噬菌体DNA. 最后, 重组噬菌体DNA经体外包装和扩增, 得到T7噬菌体展示文库, 并进行T7噬菌体展示文库滴度、 重组率和免疫活性测定. 实验结果表明, 从Gene Bank中查找、 筛选、 剪切和修饰共获得96 258条序列构建T7噬菌体展示文库, 原始文库滴度为3.6×107个菌落/mL, 重组率大于90%. 用禽流感病毒H5N1抗体进行捕获, 经聚合酶链式反应(PCR)鉴定, 得到理想目的条带, 证明噬菌体表面展示蛋白具有抗原活性, 可用于禽流感病毒感染患者的快速检测及抗原表位筛选.  相似文献   

8.
The marine unicellular cyanobacterium Prochlorococcus is the smallest-known oxygen-evolving autotroph. It numerically dominates the phytoplankton in the tropical and subtropical oceans, and is responsible for a significant fraction of global photosynthesis. Here we compare the genomes of two Prochlorococcus strains that span the largest evolutionary distance within the Prochlorococcus lineage and that have different minimum, maximum and optimal light intensities for growth. The high-light-adapted ecotype has the smallest genome (1,657,990 base pairs, 1,716 genes) of any known oxygenic phototroph, whereas the genome of its low-light-adapted counterpart is significantly larger, at 2,410,873 base pairs (2,275 genes). The comparative architectures of these two strains reveal dynamic genomes that are constantly changing in response to myriad selection pressures. Although the two strains have 1,350 genes in common, a significant number are not shared, and these have been differentially retained from the common ancestor, or acquired through duplication or lateral transfer. Some of these genes have obvious roles in determining the relative fitness of the ecotypes in response to key environmental variables, and hence in regulating their distribution and abundance in the oceans.  相似文献   

9.
构建T7噬菌体展示禽流感病毒抗原变异性基因片段文库. 首先, 从Gene Bank中查找筛选禽流感病毒抗原变异性基因, 将其截短、 修饰、 简并后得到禽流感病毒抗原变异性基因微阵列. 其次, 将合成的禽流感病毒抗原变异性基因片段文库扩增、 酶切, 链接到双酶切后的T7噬菌体载体基因上, 构成重组噬菌体DNA. 最后, 重组噬菌体DNA经体外包装和扩增, 得到T7噬菌体展示文库, 并进行T7噬菌体展示文库滴度、 重组率和免疫活性测定. 实验结果表明, 从Gene Bank中查找、 筛选、 剪切和修饰共获得96 258条序列构建T7噬菌体展示文库, 原始文库滴度为3.6×107个菌落/mL, 重组率大于90%. 用禽流感病毒H5N1抗体进行捕获, 经聚合酶链式反应(PCR)鉴定, 得到理想目的条带, 证明噬菌体表面展示蛋白具有抗原活性, 可用于禽流感病毒感染患者的快速检测及抗原表位筛选.  相似文献   

10.
Bibby TS  Mary I  Nield J  Partensky F  Barber J 《Nature》2003,424(6952):1051-1054
Prochlorococcus, the most abundant genus of photosynthetic organisms, owes its remarkably large depth distribution in the oceans to the occurrence of distinct genotypes adapted to either low- or high-light niches. The pcb genes, encoding the major chlorophyll-binding, light-harvesting antenna proteins in this genus, are present in multiple copies in low-light strains but as a single copy in high-light strains. The basis of this differentiation, however, has remained obscure. Here we show that the moderate low-light-adapted strain Prochlorococcus sp. MIT 9313 has one iron-stress-induced pcb gene encoding an antenna protein serving photosystem I (PSI)--comparable to isiA genes from cyanobacteria--and a constitutively expressed pcb gene encoding a photosystem II (PSII) antenna protein. By comparison, the very low-light-adapted strain SS120 has seven pcb genes encoding constitutive PSI and PSII antennae, plus one PSI iron-regulated pcb gene, whereas the high-light-adapted strain MED4 has only a constitutive PSII antenna. Thus, it seems that the adaptation of Prochlorococcus to low light environments has triggered a multiplication and specialization of Pcb proteins comparable to that found for Cab proteins in plants and green algae.  相似文献   

11.
Recovery frequency of phages lambda and M13 from human and animal faeces   总被引:1,自引:0,他引:1  
Derivatives of bacteriophages lambda and M13 are in common use as vectors in recombinant DNA RESEARCH. These laboratory-derived phages have been designed to allow cloning of DNA fragments, but to be unable to survive outside a defined laboratory and/or host-cell environment. To assess the availability of wild-type lambda or M13 phages in the environment which might potentially rescue debilitated derivative phages, we have now examined the frequency of these and other bacteriophages in human and animal faeces. We detected coliphage in over two-thirds of the faecal samples. Of these, 1.2% of the samples contained lambda-like phage and 3.5% had phage indistinguishable from M13.  相似文献   

12.
13.
All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and mammalian cell cultures. Here we describe a novel genome-wide RNA interference (RNAi) screen in Drosophila that can be used to identify host genes important for influenza virus replication. After modifying influenza virus to allow infection of Drosophila cells and detection of influenza virus gene expression, we tested an RNAi library against 13,071 genes (90% of the Drosophila genome), identifying over 100 for which suppression in Drosophila cells significantly inhibited or stimulated reporter gene (Renilla luciferase) expression from an influenza-virus-derived vector. The relevance of these findings to influenza virus infection of mammalian cells is illustrated for a subset of the Drosophila genes identified; that is, for three implicated Drosophila genes, the corresponding human homologues ATP6V0D1, COX6A1 and NXF1 are shown to have key functions in the replication of H5N1 and H1N1 influenza A viruses, but not vesicular stomatitis virus or vaccinia virus, in human HEK 293 cells. Thus, we have demonstrated the feasibility of using genome-wide RNAi screens in Drosophila to identify previously unrecognized host proteins that are required for influenza virus replication. This could accelerate the development of new classes of antiviral drugs for chemoprophylaxis and treatment, which are urgently needed given the obstacles to rapid development of an effective vaccine against pandemic influenza and the probable emergence of strains resistant to available drugs.  相似文献   

14.
Prisoner's dilemma in an RNA virus   总被引:13,自引:0,他引:13  
Turner PE  Chao L 《Nature》1999,398(6726):441-443
The evolution of competitive interactions among viruses was studied in the RNA phage phi6 at high and low multiplicities of infection (that is, at high and low ratios of infecting phage to host cells). At high multiplicities, many phage infect and reproduce in the same host cell, whereas at low multiplicities the viruses reproduce mainly as clones. An unexpected result of this study was that phage grown at high rates of co-infection increased in fitness initially, but then evolved lowered fitness. Here we show that the fitness of the high-multiplicity phage relative to their ancestors generates a pay-off matrix conforming to the prisoner's dilemma strategy of game theory. In this strategy, defection (selfishness) evolves, despite the greater fitness pay-off that would result if all players were to cooperate. Viral cooperation and defection can be defined as, respectively, the manufacturing and sequestering of diffusible (shared) intracellular products. Because the low-multiplicity phage did not evolve lowered fitness, we attribute the evolution of selfishness to the lack of clonal structure and the mixing of unrelated genotypes at high multiplicity.  相似文献   

15.
Filamentous phage integration requires the host recombinases XerC and XerD   总被引:19,自引:0,他引:19  
Huber KE  Waldor MK 《Nature》2002,417(6889):656-659
Many bacteriophages and animal viruses integrate their genomes into the chromosomal DNA of their hosts as a method of promoting vertical transmission. Phages that integrate in a site-specific fashion encode an integrase enzyme that catalyses recombination between the phage and host genomes. CTX phi is a filamentous bacteriophage that contains the genes encoding cholera toxin, the principal virulence factor of the diarrhoea-causing Gram-negative bacterium Vibrio cholerae. CTX phi integrates into the V. cholerae genome in a site-specific manner; however, the approximately 6.9-kilobase (kb) CTX phi genome does not encode any protein with significant homology to known recombinases. Here we report that XerC and XerD, two chromosome-encoded recombinases that ordinarily function to resolve chromosome dimers at the dif recombination site, are essential for CTX phi integration into the V. cholerae genome. The CTX phi integration site was found to overlap with the dif site of the larger of the two V. cholerae chromosomes. Examination of sequences of the integration sites of other filamentous phages indicates that the XerCD recombinases also mediate the integration of these phage genomes at dif-like sites in various bacterial species.  相似文献   

16.
J E Suarez  K F Chater 《Nature》1980,286(5772):527-529
The Gram-positive, mycelial, differentiating streptomycetes are responsible for the production of many important antibiotics. The availability of gene cloning systems in this microbial group would have many industrial applications besides allowing more penetrating study of the genetics of Streptomyces coelicolor A3(2) (which, as the best understood streptomycete genetically, serves as a model for much other Streptomyces genetics). Recent successes (see previous paper) in introducing Streptomyces DNA into S. coelicolor and Streptomyces lividans on plasmid vectors would be nicely complemented by the availability of Streptomyces bacteriophage vectors (discussed in ref. 5): for example, many phages have wide and easily defined host ranges; heat-inducible prophages might be used to give high copy number of cloned DNA; efficient phage promoters might be used to increase gene expression; there may be differential stabilities for particular DNA sequences cloned in plasmids vis-à-vis phages; selective insertion of DNA, utilizing packaging constraints, may be possible with phages; and in situ hybridization of radioactive probes to DNA in plaques is likely to be simple. We describe here the use of the moderately wide host range temperate phage, phi C31, for this purpose.  相似文献   

17.
T J Pollock  I Tessman  E S Tessman 《Nature》1978,274(5666):34-37
The small single-stranded DNA phages phiX174 and S13 produce multiple products of certain phage genes, as observed by electrophoresis on SDS-polyacrylamide slab gels. Two A protein products, two A products and four G products are observed. The multiple gene products may arise from multiple sites for initiation or termination of translation, or by protein modification. Some of the variant products may provide a substitute for heterozygosity without a concomitant increase in the size of the genome.  相似文献   

18.
Buckling A  Rainey PB 《Nature》2002,420(6915):496-499
Exploiters (parasites and predators) are thought to play a significant role in diversification, and ultimately speciation, of their hosts or prey. Exploiters may drive sympatric (within-population) diversification if there are a variety of exploiter-resistance strategies or fitness costs associated with exploiter resistance. Exploiters may also drive allopatric (between-population) diversification by creating different selection pressures and increasing the rate of random divergence. We examined the effect of a virulent viral parasite (phage) on the diversification of the bacterium Pseudomonas fluorescens in spatially structured microcosms. Here we show that in the absence of phages, bacteria rapidly diversified into spatial niche specialists with similar patterns of diversity across replicate populations. In the presence of phages, sympatric diversity was greatly reduced, as a result of phage-imposed reductions in host density decreasing competition for resources. In contrast, allopatric diversity was greatly increased as a result of phage-imposed selection for resistance, which caused populations to follow divergent evolutionary trajectories. These results show that exploiters can drive diversification between populations, but may inhibit diversification within populations by opposing diversifying selection that arises from resource competition.  相似文献   

19.
从济南制药厂L—山梨糖混合发酵液中分离得到四株芽孢杆菌噬菌体,其中一株来自寄主巨大芽孢杆菌,三株来自腊状芽孢杆菌,这些噬菌体都是有尾的,根据形态可分为二类。通过选育获得了几株抗噬菌体菌株,经摇瓶混合发酵试验,表明抗株不但具有稳定的抗性而且保持了原种的性能。  相似文献   

20.
Ecological studies on Prochlorococcus in China seas   总被引:1,自引:0,他引:1  
Prochlorococcus, a tiny oxygenic photosynthetic picoplankton with unique pigment composition, has been found to be ubiquitous and abundant in the world oceans, and has been recognized to be closely related to living resources and environmental issues. It has attracted the interest of marine biologists since its discovery, and field data on it over global oceans have accumulated rapidly in the past 10 years. In China, we have studied Prochlorococcus for 8 years, achieving a basic ecological understanding. The presence of Prochlorococcus in China seas, marginal seas of the west Pacific, was confirmed, and its distribution patterns were also brought to light. Prochlorococcus is very abundant in the South China Sea and the offshore regions of the East China Sea. It is seasonally present in the southeast part of the Yellow Sea and absent in the Bohai Sea. Temporal and spatial variations of the abundance of Prochlorococcus and their affecting factors, physiological and ecological characteristics of Prochlorococcus and their relationships to the other groups of picoplankton, and the importance of Prochlorococcus in total biomass and possible roles in living resources and environmental problems are discussed. In the future, isolation of different Prochlorococcus strains from the China seas and their physiological characteristics, genetic diversity, phylogenies and gene exploiture, etc. are important issues to be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号