共查询到20条相似文献,搜索用时 15 毫秒
1.
Rb targets histone H3 methylation and HP1 to promoters 总被引:78,自引:0,他引:78
Nielsen SJ Schneider R Bauer UM Bannister AJ Morrison A O'Carroll D Firestein R Cleary M Jenuwein T Herrera RE Kouzarides T 《Nature》2001,412(6846):561-565
2.
Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins 总被引:112,自引:0,他引:112
Distinct modifications of histone amino termini, such as acetylation, phosphorylation and methylation, have been proposed to underlie a chromatin-based regulatory mechanism that modulates the accessibility of genetic information. In addition to histone modifications that facilitate gene activity, it is of similar importance to restrict inappropriate gene expression if cellular and developmental programmes are to proceed unperturbed. Here we show that mammalian methyltransferases that selectively methylate histone H3 on lysine 9 (Suv39h HMTases) generate a binding site for HP1 proteins--a family of heterochromatic adaptor molecules implicated in both gene silencing and supra-nucleosomal chromatin structure. High-affinity in vitro recognition of a methylated histone H3 peptide by HP1 requires a functional chromo domain; thus, the HP1 chromo domain is a specific interaction motif for the methyl epitope on lysine9 of histone H3. In vivo, heterochromatin association of HP1 proteins is lost in Suv39h double-null primary mouse fibroblasts but is restored after the re-introduction of a catalytically active SWUV39H1 HMTase. Our data define a molecular mechanism through which the SUV39H-HP1 methylation system can contribute to the propagation of heterochromatic subdomains in native chromatin. 相似文献
3.
Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain 总被引:108,自引:0,他引:108
Bannister AJ Zegerman P Partridge JF Miska EA Thomas JO Allshire RC Kouzarides T 《Nature》2001,410(6824):120-124
4.
Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin 总被引:1,自引:0,他引:1
Histones are subject to numerous post-translational modifications. Some of these 'epigenetic' marks recruit proteins that modulate chromatin structure. For example, heterochromatin protein 1 (HP1) binds to histone H3 when its lysine 9 residue has been tri-methylated by the methyltransferase Suv39h (refs 2-6). During mitosis, H3 is also phosphorylated by the kinase Aurora B. Although H3 phosphorylation is a hallmark of mitosis, its function remains mysterious. It has been proposed that histone phosphorylation controls the binding of proteins to chromatin, but any such mechanisms are unknown. Here we show that antibodies against mitotic chromosomal antigens that are associated with human autoimmune diseases specifically recognize H3 molecules that are modified by both tri-methylation of lysine 9 and phosphorylation of serine 10 (H3K9me3S10ph). The generation of H3K9me3S10ph depends on Suv39h and Aurora B, and occurs at pericentric heterochromatin during mitosis in different eukaryotes. Most HP1 typically dissociates from chromosomes during mitosis, but if phosphorylation of H3 serine 10 is inhibited, HP1 remains chromosome-bound throughout mitosis. H3 phosphorylation by Aurora B is therefore part of a 'methyl/phos switch' mechanism that displaces HP1 and perhaps other proteins from mitotic heterochromatin. 相似文献
5.
6.
Rea S Eisenhaber F O'Carroll D Strahl BD Sun ZW Schmid M Opravil S Mechtler K Ponting CP Allis CD Jenuwein T 《Nature》2000,406(6796):593-599
The organization of chromatin into higher-order structures influences chromosome function and epigenetic gene regulation. Higher-order chromatin has been proposed to be nucleated by the covalent modification of histone tails and the subsequent establishment of chromosomal subdomains by non-histone modifier factors. Here we show that human SUV39H1 and murine Suv39h1--mammalian homologues of Drosophila Su(var)3-9 and of Schizosaccharomyces pombe clr4--encode histone H3-specific methyltransferases that selectively methylate lysine 9 of the amino terminus of histone H3 in vitro. We mapped the catalytic motif to the evolutionarily conserved SET domain, which requires adjacent cysteine-rich regions to confer histone methyltransferase activity. Methylation of lysine 9 interferes with phosphorylation of serine 10, but is also influenced by pre-existing modifications in the amino terminus of H3. In vivo, deregulated SUV39H1 or disrupted Suv39h activity modulate H3 serine 10 phosphorylation in native chromatin and induce aberrant mitotic divisions. Our data reveal a functional interdependence of site-specific H3 tail modifications and suggest a dynamic mechanism for the regulation of higher-order chromatin. 相似文献
7.
8.
Nielsen PR Nietlispach D Mott HR Callaghan J Bannister A Kouzarides T Murzin AG Murzina NV Laue ED 《Nature》2002,416(6876):103-107
Specific modifications to histones are essential epigenetic markers---heritable changes in gene expression that do not affect the DNA sequence. Methylation of lysine 9 in histone H3 is recognized by heterochromatin protein 1 (HP1), which directs the binding of other proteins to control chromatin structure and gene expression. Here we show that HP1 uses an induced-fit mechanism for recognition of this modification, as revealed by the structure of its chromodomain bound to a histone H3 peptide dimethylated at Nzeta of lysine 9. The binding pocket for the N-methyl groups is provided by three aromatic side chains, Tyr21, Trp42 and Phe45, which reside in two regions that become ordered on binding of the peptide. The side chain of Lys9 is almost fully extended and surrounded by residues that are conserved in many other chromodomains. The QTAR peptide sequence preceding Lys9 makes most of the additional interactions with the chromodomain, with HP1 residues Val23, Leu40, Trp42, Leu58 and Cys60 appearing to be a major determinant of specificity by binding the key buried Ala7. These findings predict which other chromodomains will bind methylated proteins and suggest a motif that they recognize. 相似文献
9.
Ca2+ is prominant in the control of cell proliferation and function. However, the biochemical mechanism(s) mediating its effects on nuclear events is unknown. We report here that Ca2+, at physiological concentrations, stimulates the phosphorylation of histone H3 by an endogenous protein kinase in HeLa cell nuclei. Also, pretreatment of cells with Na butyrate, which increases histone acetylation, selectively increases the susceptability of histone H3 to phosphorylation by the protein kinase. Our results reveal a potential link between histone H3 acetylation and phosphorylation, modifications which are thought to have important effects on chromatin structure and function and suggest a possible mechanism whereby stimuli at the cell surface (such as hormones, mitogens and drugs) may influence biochemical events at the nuclear level; changes in the intracellular Ca2+ concentration may influence the phosphorylation of chromosomal proteins, mediated by Ca2+ -dependent kinases in th nucleus. 相似文献
10.
11.
12.
DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. We have demonstrated previously that dim-2 encodes a DNA methyltransferase that is responsible for all known cytosine methylation in Neurospora crassa. Here we report that another Neurospora gene, dim-5, is required for DNA methylation, as well as for normal growth and full fertility. We mapped dim-5 and identified it by transformation with a candidate gene. The mutant has a nonsense mutation in a SET domain of a gene related to histone methyltransferases that are involved in heterochromatin formation in other organisms. Transformation of a wild-type strain with a segment of dim-5 reactivated a silenced hph gene, apparently by 'quelling' of dim-5. We demonstrate that recombinant DIM-5 protein specifically methylates histone H3 and that replacement of lysine 9 in histone H3 with either a leucine or an arginine phenocopies the dim-5 mutation. We conclude that DNA methylation depends on histone methylation. 相似文献
13.
Numerous post-translational modifications of histones have been described in organisms ranging from yeast to humans. Growing evidence for dynamic regulation of these modifications, position- and modification-specific protein interactions, and biochemical crosstalk between modifications has strengthened the 'histone code' hypothesis, in which histone modifications are integral to choreographing the expression of the genome. One such modification, ubiquitylation of histone H2B (uH2B) on lysine 120 (K120) in humans, and lysine 123 in yeast, has been correlated with enhanced methylation of lysine 79 (K79) of histone H3 (refs 5-8), by K79-specific methyltransferase Dot1 (KMT4). However, the specific function of uH2B in this crosstalk pathway is not understood. Here we demonstrate, using chemically ubiquitylated H2B, a direct stimulation of hDot1L-mediated intranucleosomal methylation of H3 K79. Two traceless orthogonal expressed protein ligation (EPL) reactions were used to ubiquitylate H2B site-specifically. This strategy, using a photolytic ligation auxiliary and a desulphurization reaction, should be generally applicable to the chemical ubiquitylation of other proteins. Reconstitution of our uH2B into chemically defined nucleosomes, followed by biochemical analysis, revealed that uH2B directly activates methylation of H3 K79 by hDot1L. This effect is mediated through the catalytic domain of hDot1L, most likely through allosteric mechanisms. Furthermore, asymmetric incorporation of uH2B into dinucleosomes showed that the enhancement of methylation was limited to nucleosomes bearing uH2B. This work demonstrates a direct biochemical crosstalk between two modifications on separate histone proteins within a nucleosome. 相似文献
14.
15.
16.
Ooi SK Qiu C Bernstein E Li K Jia D Yang Z Erdjument-Bromage H Tempst P Lin SP Allis CD Cheng X Bestor TH 《Nature》2007,448(7154):714-717
Mammals use DNA methylation for the heritable silencing of retrotransposons and imprinted genes and for the inactivation of the X chromosome in females. The establishment of patterns of DNA methylation during gametogenesis depends in part on DNMT3L, an enzymatically inactive regulatory factor that is related in sequence to the DNA methyltransferases DNMT3A and DNMT3B. The main proteins that interact in vivo with the product of an epitope-tagged allele of the endogenous Dnmt3L gene were identified by mass spectrometry as DNMT3A2, DNMT3B and the four core histones. Peptide interaction assays showed that DNMT3L specifically interacts with the extreme amino terminus of histone H3; this interaction was strongly inhibited by methylation at lysine 4 of histone H3 but was insensitive to modifications at other positions. Crystallographic studies of human DNMT3L showed that the protein has a carboxy-terminal methyltransferase-like domain and an N-terminal cysteine-rich domain. Cocrystallization of DNMT3L with the tail of histone H3 revealed that the tail bound to the cysteine-rich domain of DNMT3L, and substitution of key residues in the binding site eliminated the H3 tail-DNMT3L interaction. These data indicate that DNMT3L recognizes histone H3 tails that are unmethylated at lysine 4 and induces de novo DNA methylation by recruitment or activation of DNMT3A2. 相似文献
17.
18.
Pei H Zhang L Luo K Qin Y Chesi M Fei F Bergsagel PL Wang L You Z Lou Z 《Nature》2011,470(7332):124-128
p53-binding protein 1 (53BP1) is known to be an important mediator of the DNA damage response, with dimethylation of histone H4 lysine 20 (H4K20me2) critical to the recruitment of 53BP1 to double-strand breaks (DSBs). However, it is not clear how 53BP1 is specifically targeted to the sites of DNA damage, as the overall level of H4K20me2 does not seem to increase following DNA damage. It has been proposed that DNA breaks may cause exposure of methylated H4K20 previously buried within the chromosome; however, experimental evidence for such a model is lacking. Here we found that H4K20 methylation actually increases locally upon the induction of DSBs and that methylation of H4K20 at DSBs is mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals. Downregulation of MMSET significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Furthermore, we found that the recruitment of MMSET to DSBs requires the γH2AX-MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser?102 of MMSET. Thus, we propose that a pathway involving γH2AX-MDC1-MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment. 相似文献
19.
Among various histones, histone H1 proteins have been appreciated for their multiple functions in diverse biological processes. In addition to being a structural protein in chromatin, H1 proteins also play critical roles in cell cycle, gene expression, and development. Recent studies reveal the possible effects of H1 in some diseases, such as cancer and neurodegenerative diseases. Here, we review different variants of HI, the functions, and post translational modifications of ill variants are also discussed. 相似文献
20.
To ensure flowering in favourable conditions, many plants flower only after an extended period of cold, namely winter. In Arabidopsis, the acceleration of flowering by prolonged cold, a process called vernalization, involves downregulation of the protein FLC, which would otherwise prevent flowering. This lowered FLC expression is maintained through subsequent development by the activity of VERNALIZATION (VRN) genes. VRN1 encodes a DNA-binding protein whereas VRN2 encodes a homologue of one of the Polycomb group proteins, which maintain the silencing of genes during animal development. Here we show that vernalization causes changes in histone methylation in discrete domains within the FLC locus, increasing dimethylation of lysines 9 and 27 on histone H3. Such modifications identify silenced chromatin states in Drosophila and human cells. Dimethylation of H3 K27 was lost only in vrn2 mutants, but dimethylation of H3 K9 was absent from both vrn1 and vrn2, consistent with VRN1 functioning downstream of VRN2. The epigenetic memory of winter is thus mediated by a 'histone code' that specifies a silent chromatin state conserved between animals and plants. 相似文献