首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
吕蓬  岳莉莉  赵晓丽 《科技信息》2011,(14):401-402
风速时间序列的非平稳性使得对其预测比较困难。论文首先对风电场的小时平均风速数据采用基于传统的滚动时间序列模型进行短期预测,针对原始序列的非平稳性和异常点的干扰,利用小波分解理论对原始风速进行小波分解与重构,然后对重构后的概貌部分和细节部分分别采用ARIMA模型进行预测,累加结果得到未来时段的预测风速,经比较分析可知,小波ARIMA模型的预测效果优于传统的滚动时间序列模型的预测效果。  相似文献   

2.
基于小波分解的径流非线性预测   总被引:6,自引:0,他引:6  
利用小波变换原理将具有非平稳特征的径流序列进行分解,使其平稳项与随机项分离。对平稳项采用传统的AR模型加以预测,而通过对随机项的混沌特征研究,发现其具有明显的混沌特征,进而提出了基于非线性混沌动力学的预测模型方法。最后通过小波对所提出的AR NCDF预测模型预测结果予以重构,实现对原始径流序列的预测。该方法通过实例验证具有较高的精度,是一种实际可行的方法。  相似文献   

3.
小波神经网络是在小波变换理论和人工神经网络的基础上建立的一种新型网络模型,综合了两者的优点,克服了BP神经网络易陷入局部极小点和训练速度慢的缺点.本文建立了小波神经网络模型,采用最陡梯度下降法训练网络,将该网络用于对风电场小时风速的预测,并对预测置信区间进行计算.预测结果表明小波神经网络在训练速度和预测精度方面均优于BP神经网络.  相似文献   

4.
为克服随时间变化模型基于适应过滤器和窗口估计方法中窗口长度不宜过大,产生的短时时间序列模拟准确性不够高的缺点,应用小波分解方法,结合线性滤波器法的向量过程自回归(AR)模型,给出了模拟空间脉动风场的一种新方法.该方法对于AR模型自回归系数在空间上进行小波扩展,采用最小二乘法来估计AR模型的自回归系数,并给出了该方法模拟空间风速场的实现步骤.将该方法应用于一空间结构的风速场模拟,并给出了模拟结果与目标值的对比,以及与向量过程AR模型模拟结果的对比,结果证实该方法可以减少风速时程分析在频域上的信息损失,对短时时间序列模拟具有较高的准确性,并具有较高的计算效率.  相似文献   

5.
首次提出将小波分解应用于非平稳时间序列的预测中,通过小波分解将非平稳时间序列分解为多层近似意义上的平稳时间序列,并且用AR(n)模型对分解后的时间序列进行预测,进而得到最终的预测结果.将该方法应用于压缩机轴承座磨损的趋势预测中,通过与基于BP网络的预测方法相比较表明:该方法预测精度高,而且预测速度快,可以有效地应用设备状态的预测和设备故障趋势的分析中.  相似文献   

6.
风速预测在风电场的运行中扮演着重要的角色,但由于风速时间序列在统计上呈现出高维、非线性、多重周期性的复杂特征,风速被研究者认为是最难模拟和预测的气象参数之一.该文分别采取集合经验模式分解(EEMD)和离散小波去噪(DWT)对风速数据进行降噪,利用改进布谷鸟(MCS)算法优化BP神经网络(BPNN)中的权值和阈值,从而构...  相似文献   

7.
由于现代的数据通信网络中网络流量存在很强的自相似性,如何降低这种自相似性给网络的性能造成的不利影响成为大家关注的焦点。本文通过实际的网络流量数据,利用小波变换和平稳时间序列的AR模型,实现了对网络流量很好的预测,其结果对于在网络中优化排队算法和实施流量工程具有很好的参考价值。  相似文献   

8.
海洋风速预测对远洋航行安全与航线规划具有重大影响.风速同时受多种外在自然因素影响,表现出强烈的非线性、非平稳性与随机性等特性,使得预测准确性受到极大考验.为提高风速预测准确性,创新性地提出一种基于变分模态分解与融合注意力机制的神经网络的风速预测方法.首先,利用变分模态分解将风速序列分解为一系列调幅调频信号,以降低数据复杂度,有效提取特征并提高噪声鲁棒性,减少风速自身对预测准确性的影响.其次,对分解后的不同模态子序列利用融合注意力机制的神经网络进行风速预测.最后,用实测数据验证所提方法的有效性.与其他典型风速预测模型相比,所提方法可有效提高风速预测准确性.  相似文献   

9.
针对股价数据具有高噪声、非线性和非平稳性等特征,使得股价精确预测非常困难的问题,提出小波-长短 记忆网络(LSTM-Wavelet)模型应用于股价预测。 首先,利用小波(Wavelet)分解降低金融时间序列的不稳定性,并 分析小波系数的细节特征;接着,发挥长短记忆网络(LSTM)模型的优势,深层挖掘小波系数中的长期依赖关系,对 分解后的各层小波系数分别建模预测;最后进行预测小波系数的数据重构。 使用中石油近两年的股价数据进行实 证分析,以每个交易日的开盘价、最高价、最低价、交易量为特征输入,预测当日中石油的收盘价。 结果表明:相较 于标准 LSTM 模型和小波- ARIMA (ARIMA-Wavelet)模型,提出的 LSTM-Wavelet 模型有更好的预测效果; 通过 小波分析将复杂股票数据,分解为长短记忆网络(LSTM)容易识别的小波系数,根据各层小波系数不同的数据特征 进行分层预测,提高了预测精度。  相似文献   

10.
提出了一种基于小波分解(wavelet-decomposition)的数据输入格式-径向基神经网络(data input format-radial basis functional neural network)超短期风速组合预测模型.该模型首先将风速时间序列数据进行小波分解,减缓风速时间序列的波动性,然后将分解后的低频、高频部分分别建立数据输入格式(风速输入矩阵),并通过径向基神经网络模型进行预测,最后通过自适应叠加得到最终预测结果.结合宁夏某风场实测数据,将该预测模型和其他三种预测模型的仿真实验结果与实测值进行对比,表明该组合预测模型具有较高的预测精度.  相似文献   

11.
利用小波包的信号分析特性及峰式马尔科夫链的非稳态数据预测特性,提出一种新型风速短期预测方法。该方法对历史风速数据进行小波包分解,利用峰式马尔科夫链对小波包系数进行统计,分别得到小波包系数上升转移概率矩阵和下降转移概率矩阵,并由此得到下一时刻的小波包预测系数,将小波包系数进行重构可得到预测的风速。该文模型与其他模型的预测结果对比表明,该方法具有较高精度。  相似文献   

12.
针对原始风速序列具有非线性、非平稳性和不可控性的问题,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-模糊熵(fuzzy entropy,FE)-深度信念网络(deep belief network,DBN)的短期风速预测模型。首先,利用CEEMD方法将原始风速序列分解为一系列不同尺度的本征模态分量(IMF)以降低其非平稳性;其次,利用模糊熵方法将多个IMF分量进行重组以避免分量数目过多给预测精度造成的影响;最后,利用深度信念网络其强大的深度特征提取能力和非线性映射学习能力的优点,分别对新的分量进行预测和叠加获得最终预测值。实验表明,较BP神经网络模型和DBN模型,组合模型提高了预测精度,具有可行性和有效性。  相似文献   

13.
结合粗糙集提出了一种RBF神经网络短期风速预测模型。采用粗糙集对预测模型的输入特征空间进行约简,找出对未来预测的风速具有主要影响的因素,以此作为RBF神经网络预测模型的输入变量;在RBF神经网络训练的过程中,采用在线滚动优化策略,将最新的样本加入训练集,从而使预测模型能够跟踪风速的最新变化。将提出的方法用于某风电场的1 h短期风速预测,仿真实验结果表明该方法具有结构简单、预测精度高的优点。  相似文献   

14.
在分析风能的特性、风速区域划分以及大型风力发电机组常用控制方法的基础上,指出当前控制中存在的滞后、大惯性等问题.针对这些问题,提出基于风速预测的新型变桨距协调控制方法,在高于额定风速的情况下,加入风速预测环节,从而克服风速测量滞后、桨距角调节惯性大等问题.这种控制方法将小波变换嵌入时间序列法中,用于建立ARMA模型进行风速预测,然后将预测的风速送入控制环节,具有较好的动态控制性能.最后,通过实例仿真验证了该设计方法的有效性.  相似文献   

15.
提出一个基于小波包分析的网络流量组合预测模型,将流量数据构成的原始序列进行小波包分解,并将分解得到的各近似部分和各细节部分分别单支重构成低频序列和高频序列.根据低频序列和高频序列的不同特性,分别采用自回归模型(AR)和线性最小均方误差估计(LMMSE)对未来网络流量进行预测,最后重新组合生成预测流量.通过对真实网络流量的仿真实验,结果显示该模型能够对网络流量进行比较精确的预测.  相似文献   

16.
提出一个基于小波包分析的网络流量组合预测模型,将流量数据构成的原始序列进行小波包分解,并将分解得到的各近似部分和各细节部分分别单支重构成低频序列和高频序列.根据低频序列和高频序列的不同特性,分别采用自回归模型(AR)和线性最小均方误差估计(LMMSE)对未来网络流量进行预测,最后重新组合生成预测流量.通过对真实网络流量...  相似文献   

17.
对上证指数数据进行多分辨率分解以满足平衡性条件,进而对各个尺度下的数据分别用ARMA模型进行拟合。利用拟合后的模型进行预测,与实际值相比得到了较为满意的结果。  相似文献   

18.
为提高传统神经网络对非平稳风速的预测精度,提出一种基于小波分析法与神经网络法混合建模的优化算法。该优化方法引入小波分析法对实测非平稳风速信号进行分解,将非平稳性原始风速序列转化为多层较平稳分解风速序列,再利用BP神经网络对各分解层风速序列建立预测模型,最终加权各层预测结果获得风速超前多步预测结果。仿真结果表明:该优化算法实现了风速的高精度短期多步预测,将传统神经网络法对应超前步数的平均绝对相对误差分别提高了55.56%,32.43%和34.58%,其超前1步、3步和5步预测的风速平均相对误差分别为0.48%,1.50%和2.97%。优化网络具备信号分解与自学习能力。  相似文献   

19.
为了提高风速序列预测的可靠性,针对具有混沌特性的风速序列,构造了一种用于风速序列预测的联想网络。以风速序列的波动性作为相似性测度准则,构造联想网络的存储样本模式,根据存储模式中蕴含的关联信息完成网络的无监督学习,从而完成具有自相似性的风速序列的一步或多步预测分析。与传统前向型神经网络相比,该网络预测机理明确,预测结果唯一,且可一次给出多步预测结果。仿真实验结果表明,该网络的具有良好预测性能,适用于风速序列的动态预测。  相似文献   

20.
为实现风电场风速的超前多步高精度预测,提出一种基于小波分析法与滚动式时间序列法混合建模的优化算法。该优化算法引入小波分析法对风电场实测非平稳风速序列进行分解重构计算,将非平稳性原始风速序列转化为多层较平稳分解风速序列,利用对传统时间序列分析法改进后的滚动式时间序列法对各分解层风速序列建立非平稳时序预测模型,并通过模型方程实现超前多步滚动式预测计算。仿真结果表明:该优化算法实现了风速的高精度短期多步预测,将传统时间序列分析法对应超前1步、3步、5步的预测精度分别提高了54.22%,26.44%和19.38%,其预测的平均相对误差分别为1.14%,3.06%和4.41%;优化算法具有较强的细分与自学习能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号