首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dysfunction of the mitochondrial respiratory chain has been recognised as a cause of human disease for over 30 years. Advances in the past 10 years have led to a better understanding of the genetics and molecular pathogenesis of many of these disorders. Over 100 primary defects in mitochondrial DNA (mtDNA) are now implicated in the pathogenesis of a group of disorders which are collectively known as the mitochondrial encephalomyopathies, and which most frequently involve skeletal muscle and/or the central nervous system. Although impaired oxidative phosphorylation is likely to be the final common pathway leading to the cellular dysfunction associated with such mtDNA mutations, the complex relationship between genotype and phenotype remains largely unexplained. Most of the genes which encode the respiratory chain reside in the nucleus, yet only five nuclear genes have been implicated in human respiratory chain diseases. There is evidence that respiratory chain dysfunction is present in common neurological diseases such as Parkinson's disease and Huntington's disease. The precise cause of this respiratory chain dysfunction and its relationship to the disease process are unclear. This review focuses upon respiratory chain disorders associated with primary defects in mtDNA.  相似文献   

2.
Type 1A diabetes is an organ-specific autoimmune disease resulting from destruction of insulin-producing pancreatic beta-cells. The main susceptibility genes code for polymorphic HLA molecules and in particular alleles of class II MHC genes (DR, DQ and DP). Polymorphisms of individual genes outside the MHC also contribute to diabetes risk but recent evidence suggests that there are additional non-HLA genes determining susceptibility linked to the MHC. It is now possible using genetic and autoantibody assays to predict the development of type 1A diabetes in the majority of individuals, and trials of diabetes prevention are underway.  相似文献   

3.
4.
5.
Pelizaeus-Merzbacher disease (PMD) and the allelic spastic paraplegia type 2 (SPG2) arise from mutations in the X-linked gene encoding myelin proteolipid protein (PLP). Analysis of mutations affecting PLP, the major protein in central nervous system myelin, has revealed previously unsuspected roles for myelinating glia in maintaining the integrity of the nervous system. The disease spectrum for PMD and SPG2 is extraordinarily broad and can be best understood by accounting not only for the wide range of mutations that can occur but also for the effects of PLP1 mutations on both cell autonomous and non-cell autonomous processes in myelinating cells. Appreciating the wide range of genetic and cellular effects of PLP1 mutations is important for patient and family counseling, understanding disease pathogenesis, and, ultimately, for developing future disease-specific therapies. Received 24 April 2006; received after revision 3 July 2006; accepted 9 October 2006  相似文献   

6.
7.
Summary Based on the sample in this study (members of the Spina Bifida Association of America), there are approximately 2.15 times as many mothers with Rh-blood type than would be expected in a similar sized sample of the general population.  相似文献   

8.
9.
Peutz-Jeghers syndrome: clinicopathology and molecular alterations   总被引:5,自引:0,他引:5  
Peutz-Jeghers syndrome (PJS, OMIM 175200) is an unusual inherited intestinal polyposis syndrome associated with distinct peri-oral blue/black freckling [1–9]. Variable penetrance and clinical heterogeneity make it difficult to determine the exact frequency of PJS [4]. PJS is a cancer predisposition syndrome. Affected individuals are at high risk for intestinal and extra-intestinal cancers. In 1997, linkage studies mapped PJS to chromosome 19p [10, 11], and subsequently a serine/threonine kinase gene defect (LKB1) was noted in a majority of PJS cases [12, 13]. A phenotypically similar syndrome has been produced in an LKB1 mouse knockout model [14–18]. Several PJS kindred without LKB1 mutations have been described, suggesting other PJS loci [19–22]. The management of PJS is complex and evolving. New endoscopic technologies may improve management of intestinal polyposis. Identification of specific genetic mutations and their targets will more accurately assess the clinical course, and help gage the magnitude of cancer risk for affected individuals. Received 20 February 2006; received after revision 5 May 2006; accepted 15 June 2006  相似文献   

10.
Adipokinetic hormones: cell and molecular biology   总被引:1,自引:0,他引:1  
Adipokinetic hormones AKH I (pGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2) and AKH II (pGlu-Leu-Asn-Phe-Ser-Trp-Gly-Thr-NH2) are synthesized by neurosecretory cells (NSC) of the corpora cardiaca (CC) in the locust,Schistocerca gregaria. These NSC constitute a homogeneous peptide factory as each cell synthesizes both AKH I and AKH II. This homogeneity makes the CC an excellent system in which to study aspects of neuropeptide biosynthesis. This report summarizes recent findings on AKH inactivation and metabolism, as well as on AKH prohormone processing and biosynthesis.  相似文献   

11.
Clinical depression is viewed as a physical and psychic disease process having a neuropathological basis, although a clear understanding of its ethiopathology is still missing. The observation that depressive symptoms are influenced by pharmacological manipulation of monoamines led to the hypothesis that depression results from reduced availability or functional deficiency of monoaminergic transmitters in some cerebral regions. However, there are limitations to current monoamine theories related to mood disorders. Recently, a growing body of experimental data has showed that other classes of endogenous compounds, such as neuropeptides and amino acids, may play a significant role in the pathophysiology of affective disorders. With the development of neuroscience, neuronal networks and intracellular pathways have been identified and characterized, describing the existence of the interaction between monoamines and receptors in turn able to modulate the expression of intracellular proteins and neurotrophic factors, suggesting that depression/antidepressants may be intermingled with neurogenesis/neurodegenerative processes.  相似文献   

12.
Crohn’s disease and ulcerative colitis are both associated with an increased risk of inflammation-associated colorectal carcinoma. Colitis-associated cancer (CAC) is one of the most important causes for morbidity and mortality in patients with inflammatory bowel diseases (IBD). Colitis-associated neoplasia distinctly differs from sporadic colorectal cancer in its biology and the underlying mechanisms. This review discusses the molecular mechanisms of CAC and summarizes the most important genetic alterations and signaling pathways involved in inflammatory carcinogenesis. Then, clinical translation is evaluated by discussing new endoscopic techniques and their contribution to surveillance and early detection of CAC. Last, we briefly address different types of concepts for prevention (i.e., anti-inflammatory therapeutics) and treatment (i.e., surgical intervention) of CAC and give an outlook on this important aspect of IBD.  相似文献   

13.
M O'Shea  R C Rayne 《Experientia》1992,48(5):430-438
Adipokinetic hormones AKH I (pGlu-Leu-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2) and AKH II (pGlu-Leu-Asn-Phe-Ser-Trp-Gly-Thr-NH2) are synthesized by neurosecretory cells (NSC) of the corpora cardiaca (CC) in the locust, Schistocerca gregaria. These NSC constitute a homogeneous 'peptide factory' as each cell synthesizes both AKH I and AKH II. This homogeneity makes the CC an excellent system in which to study aspects of neuropeptide biosynthesis. This report summarizes recent findings on AKH inactivation and metabolism, as well as on AKH prohormone processing and biosynthesis.  相似文献   

14.
15.
Congenital muscular dystrophy: molecular and cellular aspects   总被引:8,自引:0,他引:8  
The congenital muscular dystrophies are a clinically and genetically heterogeneous group of neuromuscular disorders. Each form has a characteristic phenotype, but there is overlap between some entities and their classification is based on a combination of clinical features and the primary or secondary protein defect. Recent studies have identified the genetic basis of a number of congenital muscular dystrophies (11 genes in total) and have recognised a novel pathological mechanism that highlights the importance of the correct posttranslational processing of proteins, in particular -dystroglycan. Diagnosis of these conditions has been aided by the availability of specific antibodies for each protein and a better understanding of the protein changes that accompany each condition. In this review we present the major molecular, clinical and diagnostic aspects of each group of congenital muscular dystrophy with an emphasis in the more recent developments.Received 11 December 2004; accepted 15 December 2004  相似文献   

16.
Osteoarthritis has developed into the most common chronic disease in the highly industrialized nations. Moreover, because of the prevalence of the disease in the elderly, this trend occurs worldwide as a consequence of increasing longevity due to the overall improvement in living conditions and health status. In contrast, research on osteoarthritis is still financially marginalized within biomedical research, so that the molecular and biophysical bases for disease initiation and progression are largely unmapped. The following sequence of five reviews highlights a remarkable change in that body of knowledge taking place at the beginning of the World Health Organization (WHO) 'Bone and Joint Decade 2001-2010'. The data and ideas presented in these articles reflect to some extent the guidelines set up by the WHO and by the National Institutes of Health of the USA and therefore allow a glimpse into the directions that research in osteoarthritis will take in the future.  相似文献   

17.
18.
19.
Dendritic cells (DCs) are a heterogeneous cell population of great importance in the immune system. The emergence of new genetic technology utilizing the CD11c promoter and Cre recombinase has facilitated the dissection of functional significance and molecular regulation of DCs in immune responses and homeostasis in vivo. For the first time, this strategy allows observation of the effects of DC-specific gene deletion on immune system function in an intact organism. In this review, we present the latest findings from studies using the Cre recombinase system for cell type-specific deletion of key molecules that mediate DC homeostasis and function. Our focus is on the molecular pathways that orchestrate DC life span, migration, antigen presentation, pattern recognition, and cytokine production and signaling.  相似文献   

20.
Hsp70 chaperones: Cellular functions and molecular mechanism   总被引:36,自引:0,他引:36  
Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.Received 21 October 2004; received after revision 24 November 2004; accepted 6 December 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号