首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据泥页岩水化特点和多元协同抑制思路,构建了聚胺高性能水基钻井液。介绍了该体系的关键处理剂聚胺页岩抑制剂、包被抑制剂、铝盐封堵防塌剂和清洁润滑剂。通过屈曲硬度实验和粘结实验对比评价了聚胺高性能水基钻井液与几种典型防塌钻井液的性能。结果表明,聚胺页岩抑制剂能在低浓度下最大限度降低黏土水化层间距,有效抑制黏土水化膨胀。聚胺页岩抑制剂与铝盐封堵防塌剂复配后能显著阻缓孔隙压力传递。聚胺高性能水基钻井液抑制性和清洁润滑性突出,与油基钻井液接近。聚胺高性能水基钻井液在胜利油田田305区块进行了成功应用,解决了该区块泥页岩井壁失稳问题。  相似文献   

2.
王洪臣  贺祥彪 《科技信息》2013,(24):325-325
随着我国浅部底层石油资源的可采量日益减少,石油勘探开发向深部进军。面对地下地质情况也日益复杂,尤其是高温高压的环境下,对于钻井液性能的要求也越来越高。本文介绍了国内外钻井液技术的新进展,包括成膜水基钻井液技术、高性能水基钻井液技术、正电性钻井液技术、纳米处理剂基础上的钻井液技术,分析了目前我国钻井液技术面临的难题,并讨论了钻井液技术的发展方向。  相似文献   

3.
简要介绍高温对水基钻井液性能的影响,基于国内外研究现状,从提高黏土高温稳定性和提高聚合物处理剂高温稳定性两方面综述提高水基钻井液高温稳定性能的方法。提高聚合物处理剂高温稳定性的方法主要有优化聚合物分子结构、增强聚合物的聚集态结构和利用纳米技术提高聚合物高温稳定性。从聚合物化学结构、高温性能与作用机制等方面介绍提高水基钻井液聚合物处理剂高温稳定性的方法和水基钻井液抗高温聚合物的研究现状。对提高水基钻井液高温稳定性方法与技术的发展趋势进行分析。  相似文献   

4.
 水平井钻井是推动美国页岩气大规模开发的核心技术之一,美国在页岩气水平井初期使用油基钻井液成功钻探页岩水平井。迫于油基钻井液环保和成本高的压力,美国对页岩气水平井水基钻井液进行了研究并推广应用。介绍了美国典型的3个页岩气区块水基钻井液研究情况。Haynesville地区选用更接近井下环境1.38 MPa分压的CO2侵、12%低密度固相污染和204℃、48 h条件评价钻井液抗污染能力;通过模拟钻井液流入、井底静止和流出过程中井温和压力变化的新方法测试钻井液在井眼中的流变性。而Fayetteville和Barnett地区采用扫描电子显微镜(SEM)分析浸泡后岩石的形貌研究钻井液与岩石的作用机理,进而研究水基钻井液配方。Haynesville地区现场应用时,在CO2侵和井底204℃高温条件下,机械钻速比使用油基钻井液的邻井提高8.5%;Fayetteville和Barnett地区应用钠米硅醇封堵水基钻井液时,滑动钻速分别是9.2~15.4 m/h和7.4~24.6 m/h,复合钻钻速30.8~77.0 m/h。  相似文献   

5.
聚胺与氯化钾抑制性的对比实验研究   总被引:1,自引:0,他引:1  
近年来开发出的聚胺水基钻井液,被认为是最接近逆乳化钻井液性能的高性能水基钻井液。新型聚胺强页岩抑制剂也因其分子结构独特、抑制性能突出越来越受到人们重视。通过抑制膨润土造浆实验、屈曲硬度实验、页岩滚动分散实验、耐崩散实验、页岩膨胀实验以及X 射线衍射粘土层间距分析等实验手段,对比评价了聚胺强页岩抑制剂与传统常用抑制剂氯化钾的抑制性。结果表明,与氯化钾相比,聚胺抑制性能优异,能有效抑制粘土水化分散,在加量较少时即能发挥长期抑制作用,且具有较好的抗温性能。配伍性实验表明,聚胺与膨润土及常用处理剂具有较好的配伍性。以SDA 为主要水化抑制剂构建了聚胺水基钻井液,实验评价表明,该体系具有优良的抗盐、抗钙和抗劣土污染性能。此外,对聚胺的抑制机理进行了探讨分析。  相似文献   

6.
高温高压条件下,水基钻井液的密度不再是一个常数。而过窄的安全泥浆密度窗口是钻高温高压油气井遇到的最大的问题之一。采用高温高压静密度测定装置和常规钻井液性能测定仪器,研究了自来水和低、中、高三种密度水基钻井液的静态密度随温度和压力的变化规律,并回归了其关系式,建立起了钻井液静态密度随温度和压力而变化的数学模型,并对影响高温高压下水基钻井液静态密度变化的因素进行了分析。得出了温度对水基钻井液的密度影响最大,压力对其影响较小的结论。根据实验数据提出了随着温度的升高,压力对钻井液的密度变化影响变大的观点。  相似文献   

7.
在钻探过程中,当温压条件合适,钻井液易形成天然气水合物,造成管线堵塞、钻井液性能变化。研究2种水基钻井液对绿峡谷气水合物形成过程中的影响。结果表明实验条件下该2种水基钻井液很易形成水合物,受钻井液组分的影响,两种钻井液中天然气水合物形成速率具有明显差异。在相同的温度下,实验压力越高,天然气水合物越易于形成,反应越剧烈。采用定容压力搜索法,测定了在13~18 MPa时此2种水基钻井液与绿峡谷气形成水合物的相平衡数据,显示一种钻井液能够促进水合物的形成,另外一种钻井液对水合物形成有抑制作用。  相似文献   

8.
为减少钻井废弃液对环境的污染,针对大庆油田主要是水基钻井液的特点,根据破乳和絮凝的机理,选取了一套既简便有效又经济的废弃钻井液无害化处理工艺。解决了原来单一固化处理后土地板结问题,在确保承压强度的同时保持土地的良好渗透性和疏松性;解决了处理药剂品种复杂、施工难度大、工期长,施工成本大的问题。从环保角度看,能够达到无害化处理的环保效果。  相似文献   

9.
对于超高温水基钻井液具有高温稳定性好的特点,随着钻井技术的不断提升,对于钻井液的要求也提高。本文主要分析了当前国内外对于超高温水基钻井液处理剂的作用原理进行分析,并就其应用概况和面临的技术问题等进行研究。  相似文献   

10.
南海莺琼盆地高温高压地层钻井安全密度窗口窄,对钻井液流变性要求苛刻,而高密度钻井液因固相含量高其流变性调控难度大,因此研究高密度钻井液流变性的影响因素和调控方法对确保该地区高温高压钻井安全至关重要。本文提出通过控制钻井液处理剂液相粘度来调节水基高温高密度钻井液流变性新方法,并通过毛细管黏度法评价了莺琼盆地两套高温高压水基钻井液体系的流变性能以及液相黏度,对高密度水基钻井液流变性影响因素进行了评价和分析。结果表明,钻井液的液相黏度和固相含量是影响高密度钻井液的关键因素,钻井液体系的液相黏度由处理剂液相黏度决定,而固相含量主要由加重材料的品质决定。进一步评价结果表明,磺化类降失水剂液相黏度最低,其次为改性天然高分子降失水剂,合成类的聚合物型降失水剂液相黏度最高;钻井液在相同组成和密度条件下,重晶石品质越高,即密度越高,粒径越小,所配制的高密度钻井液流变性越优。由研究结果可得出,选择低液相黏度处理剂、低剂量膨润土和优质重晶石是高密度水基钻井液流变性调控的主要技术手段。  相似文献   

11.
自20世纪20年代以来,为解决钻井过程中遇到的各种复杂问题,在钻井液体系优化和新材料研发的基础上,对油基钻井液技术进行不断完善和改进,目前已形成包括抗高温、低固相、无土相、可逆乳化及恒流变等多种高性能油基钻井液体系和技术,并得到广泛应用。近年来,随着陆上易开采油气资源逐渐枯竭,世界范围内油气勘探开发逐步向页岩气、超深层、超深水等非常规油气、复杂油气资源迈进,对钻井液性能要求越发严苛。在水基钻井液无法满足要求的情况下,油基钻井液因固有的抗温性、页岩抑制性、水合物抑制性、润滑性和储层保护性等优势已逐渐成为钻探高温深井、大斜度定向井、页岩气水平井、海洋深水等各种复杂地层的主体钻井液技术,不仅给油基钻井液的发展带来了机会,也使油基钻井液面临前所未有的挑战。梳理并阐述油基钻井液的发展历程和目前技术现状、难点以及未来发展趋势;提出研发适合油基钻井液的“固壁剂”、油基钻井液配套的系列防漏堵漏材料、Gemini型油溶性聚合物等具特殊分子结构的絮凝剂、油基钻井液携屑剂、抗极高温度的乳化剂等,并开展生物质合成基液和绿色油基钻井液处理剂应用研究,以及采取光催化和微生物协同降解原理的废弃油基钻井液无害化处理研...  相似文献   

12.
为解决油基钻井液在页岩气水平井中应用时带来的环保问题和钻井液处理成本较高的问题,通过室内实验优选出了性能优良的封堵剂、抑制剂和润滑剂,并结合其他处理剂,研究出一套适合页岩气水平井的防塌水基钻井液体系,室内对其综合性能进行了评价.结果表明:钻井液体系经过130℃老化后,其流变性能稳定、滤失量较小,具有良好的耐温性能;钻井液体系低渗砂盘封堵实验的瞬时滤失量和静态滤失速率分别为0.6 mL和0.33 mL/min,具有良好的封堵性能;钻井液体系的抑制性能和润滑性能与现场油基钻井液体系基本相当,能够很好的起到抑制页岩水化分散和降低摩擦阻力的作用;另外,钻井液体系中加入20%NaCl、2%CaCl2和20%岩屑后,体系老化前后的流变性能和滤失量变化均不大,说明体系具有较强的抗污染能力.现场应用结果表明,使用防塌水基钻井液施工的X-101井钻井过程顺利,各项施工参数均达到设计要求,并且与前期已钻井X-3HM井相比,钻井周期、井下复杂时间以及平均井径扩大率均明显降低,水平段钻速明显提高,达到了良好的钻井效果.  相似文献   

13.
介绍了钻井液最基本的功用和陕北油田应用最广泛的水基泥浆及主要处理剂材料。针对陕北中生界油田东部地区地层稳定,南部地区易缩径、易漏失,西部地区砂岩层胶结疏松、造岩性差、易跨塌的特性,分别采用对应的钻井液。最后对陕北钻井液技术的发展方向进行了8个方面的展望。  相似文献   

14.
通过对渤海油田水基钻井液体系进行优化,并对钻井液固液分离技术进行研究,配套固控处理措施,建立渤海湾NaCl+KCl/PF-COK抑制剂的一套环保型水基钻井液体系,对现场所用钻井液进行回收压滤,最大限度实现钻井液的可循环再利用,减少废弃物总量和降低废弃物处理难度,使钻井液体系达到减量化处理和可回收再利用效果,降低海上废弃钻井液的运输成本和处理成本,实现海上钻井液减排的同时实现降本。目前通过压滤装置可以实现每100 m3废弃钻井液压滤80 m3滤液继续配制钻井液回用,20 m3滤饼再处理,实现减排80%。  相似文献   

15.
针对东海油气田N区块钻井过程中易发生井壁坍塌的问题,通过梳理分析N5区块及周边构造三口探井地质条件、地层特性、测井数据,基于地质力学与岩石力学基本原理计算了井壁坍塌压力;并对使用水基钻井液和油基钻井液的钻井工况进行对比。研究发现在钻井液密度高于坍塌压力的情况下,使用密度相对较低的油基钻井液即能够保持井壁稳定,无阻卡等复杂问题。使用水基钻井液钻井,则部分泥页岩井段井径扩大,起下钻明显阻卡,处理复杂问题耗时较长。分析主要原因,在于油基钻井液能够降低泥页岩水化程度,减缓钻井液向微裂隙中的渗流,抑制微裂隙扩展,提高钻井液对井壁的有效支撑作用。因此,在东海油气田复杂泥页岩地层钻井中,使用油基钻井液能够更好地保持井壁稳定,避免或减少钻井复杂问题。  相似文献   

16.
页岩地层水基钻井液研究进展   总被引:4,自引:1,他引:3  
王森  刘洪  陈乔  王莉莎 《科学技术与工程》2013,13(16):4597-4602,4613
开发能满足页岩长水平段钻井井壁稳定要求的钻井液是页岩地层安全钻井的一项关键技术。目前广泛采用的油基体系具有高成本、高污染的缺点。归纳了具有仿油基性能以及防塌防水化的各种新型水基钻井液,包括成膜钻井液(MEG钻井液、甲酸盐钻井液、聚合醇钻井液和硅酸盐钻井液)与隔膜钻井液的防塌成膜机理及其优良特性和现场应用情况,新型纳米钻井液技术的研究进展。建议加强成膜机理的进一步研究,并提高该类钻井液的润滑性、防卡性及膜效率,开发适应具有时敏性的长段页岩钻井的防塌成膜处理剂,并加强在国外页岩气钻井中已实践的纳米钻井液的研究。  相似文献   

17.
钻井液作用下页岩破裂失稳行为试验   总被引:2,自引:0,他引:2  
为揭示富有机质脆性页岩与钻井液之间的相互作用对井壁失稳潜在影响,以层理发育的脆性页岩为研究对象,利用蒸馏水、油基钻井液、硅酸盐钻井液及其滤液,开展钻井液高温浸泡试验,从宏观和微观方面描述页岩破裂失稳过程与机制。结果表明:钻井液侵入带来的水化膨胀与碱液侵蚀是页岩化学损伤的主要形式,也是诱发脆性页岩破裂失稳的直接原因;钻井液作用下,页岩主要沿层理面破裂,破裂根本原因是层理微缝的扩展、延伸乃至贯通形成宏观裂缝,诱发页岩失稳。室内试验与现场应用均证实,提高钻井液封堵性、降低滤失量,减弱水化与碱液侵蚀对页岩破裂失稳影响,有助于提高井壁稳定性,也是页岩气井防塌水基钻井液体系设计的主要技术思路。  相似文献   

18.
抗高温高密度水基钻井液体系的室内实验研究   总被引:2,自引:0,他引:2  
为了满足当前深井、超深井逐步向深层次开发的需要,在分析评价各种抗高温水基钻井液处理剂的基础上,优化研制出一种以OCL-JB为主要降滤失剂的抗210℃高温的高密度水基钻井液体系,并对体系的性能进行评价。实验结果表明,新型抗高温、抗盐降滤失剂OCL-JB抗温性好,能与多种处理剂配伍;OCL-JB主要是通过吸附作用,增大粘土颗粒的zeta电位和水化膜来提高泥浆中粘土微粒的聚结稳定性,控制钻井液高温高压滤失量。所研制的抗高温高密度(2.3 g/cm3)钻井液经过210℃高温后性能稳定,具有良好的高温高压流变性能和滤失造壁性能,抑制能力和抗污染能力强,润滑性好。  相似文献   

19.
轴承的清洗技术近年来快速发展,绿色、环保的清洁方式成为行业内发展的趋势。现代民用航空发动机轴承的清洗,必须从高起点进行发展,清洁、绿色、环保的清洗方式成为清洗技术发展的必然。本文论述了水基清洗剂、超声波清洗技术在轴承清洗中的运用,介绍了水基轴承清洗线的流程,相关设备的组成、功能及水基清洗剂的选取,投产前的工艺验证。  相似文献   

20.
为了满足当前深井、超深井逐步向深层次开发的需要,在分析评价各种抗高温水基钻井液处理剂的基础上,优化研制出一种以OCL-JB为主要降滤失剂的抗210℃高温的高密度水基钻井液体系,并对体系的性能进行评价.实验结果表明,新型抗高温、抗盐降滤失剂OCL-JB抗温性好,能与多种处理剂配伍;OCL-JB主要是通过吸附作用,增大粘土颗粒的zeta电位和水化膜来提高泥浆中粘土微粒的聚结稳定性,控制钻井液高温高压滤失量.所研制的抗高温高密度(2.3 g/cm3)钻井液经过210℃高温后性能稳定,具有良好的高温高压流变性能和滤失造壁性能,抑制能力和抗污染能力强,润滑性好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号