首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MTC固井技术是利用钻井施工中,要废弃的完井泥浆的降失水性和悬浮性,通过加入廉价的高炉水淬矿渣,激活剂,激活助剂,必要时再加入少量的分散剂、缓凝剂、降失水剂,使完井泥浆转化为性能完全可以和油井水泥浆相当或更好的一种新型固井技术,该转化的泥浆固化液流动性能好,稠化时间易控,具有低失水、微触变性能,稳定性好等特点,其固化体具有良好的抗腐蚀及抗高温老化性,由于该泥浆固化液是由废弃泥浆转化而来,所以和泥浆具有较好的相容性,从而可以达到顶替效率100%的效果,提高固井质量。  相似文献   

2.
以低密度矿渣水泥浆研究结果为基础 ,设计高密度水泥浆 ,使油气井全井段使用矿渣水泥浆固井 ,以提高固井质量 ,降低固井成本 .以高炉矿渣为水化胶凝材料 ,添加少量水泥和碱性激活剂 ,结合 MTC固井技术和多功能钻井液固井技术 ,设计密度 1 .75~ 1 .93 g/cm3 的矿渣水泥浆、矿渣MTC浆和矿渣 UF浆 .对 3种高密度矿渣水泥浆在 45~ 75℃条件下水泥石的抗压强度 ,水泥浆的凝结时间、流变性和稳定性进行试验对比 .试验结果表明 :3种水泥浆水泥石抗压强度从大到小依次为 :矿渣 UF浆 ,矿渣 MTC浆 ,矿渣水泥浆 .3种体系水泥石抗压强度满足油气井井下射孔作业对水泥石抗压强度的要求 .在 45~ 75℃条件下 ,随着温度的升高 ,高密度矿渣水泥浆和矿渣 UF浆水泥石抗压强度呈降低趋势 .矿渣 MTC浆和矿渣 UF浆的流变性、稳定性和稠化时间可通过钻井液的加量及性能来调整  相似文献   

3.
以低密度矿渣水泥浆研究结果为基础,设计高密度水泥浆,使油气井全井段使用矿渣水泥浆固井,以提高固井质量,降低固井成本,以同炉矿渣为水化胶凝材料。添加少量水泥和矿性激活剂结合MTC固井技术和多功能钻井液固井技术,设计密度1.75-1.93g/cm^3的矿渣水泥浆,矿渣MTC浆和矿渣UF浆,对3种高密度矿渣水泥浆在45-75℃条件下水泥石的抗压强度,水泥浆的凝结时间,流变性和稳定性进行试验对比。试验结果表明;3种水泥浆水泥石抗压强度从大到小依次为:矿渣UF浆,矿渣MTC浆,矿渣水泥浆,3种体系水泥石抗压强度满足油气井井下射孔作业对水泥石抗压强度的要求,在45-75℃条件下,随着温度的升高,高密度矿渣水泥浆和矿渣UF浆水泥石抗压强度呈降低趋势,矿渣MTC浆和矿渣UF浆的流变性,稳定性和稠化时间可通过钻井液的加量及性能来调整。  相似文献   

4.
泥浆转化为水泥浆(Mud-To-Cement,简称MTC)技术是利用钻井液的降失水性和悬浮性,通过加入廉价的高炉水淬矿渣(BFS)和激活剂(BAS),将钻井液转化为完全可以与油井水泥浆相媲美的固井液。固井作业中,因常规水泥与钻井液难以相容,造成固井水泥污染,严重影响固井质量。设计密度为1.50~1.60 g/cm3泥浆固井液体系,该体系以矿渣为水化材料,再加入激活剂,通过室内试验和现场应用,结果表明,该技术能提高固井质量,降低固井成本。在中原油田MTC固井技术首先在钻井三公司桥57井等10口井的中完固井中获得了成功现场应用,取得良好的经济效益和社会效益,并推广应用。  相似文献   

5.
由于高温深井泥浆本身具有粘度大、密度高以及成分复杂等特点,导致在MTC浆体中泥浆分散剂分散作用甚微,甚至根本无法配浆。从MTC浆体的增稠原理出发,合成出含非离子型基团的多种改性聚氧乙烯类物质的MTC高温分散剂SSOB。该分散剂加量小、分散能力强,不影响MTC浆体的稠化时间、抗压强度等其他性能,与其他外加剂(激活剂、缓凝剂等)相容性好等优点,使MTC浆体具有优良的综合性能,从而为高温深井油气的开发的MTC技术提供了保证,具有广阔的发展和应用前景  相似文献   

6.
MTC固井液二界面胶结强度实验研究   总被引:7,自引:0,他引:7  
常规水泥浆体系固井二界面胶结强度较低,为了解决这一问题,进行了MTC固井液二界面胶结强度实验研究。结果表明,MTC固化体的体积收缩率远小于水泥石的体积收缩率。与低密度水泥浆体系相比,MTC固化体系与泥饼之间能够实现整体固化胶结,MTC固化体二界面胶结强度受井壁界面性质影响较小,尤其在有一定泥饼存在的情况下更是如此。但由于MTC固化体的抗压强度较低,在地层压力或注入压力较高的井中应谨慎使用。  相似文献   

7.
水乳环氧对水泥砂浆强度的影响   总被引:5,自引:0,他引:5  
通过对水泥砂浆中掺加水乳环氧,研究了水乳环氧对水泥砂浆强度的影响;并在体系中掺加矿渣微细粉,成功地制备了环氧树脂聚合物水泥基材料。运用SEM、XRD等微观测试手段,初步研究了环氧树脂水泥基材料的微观结构,进而探讨了该聚合物对水泥基材料的改性作用与机理。研究结果表明,双掺水乳环氧和矿渣微粉改性的水泥砂浆具有较高的抗折强度和抗压强度。环氧聚合物和微细矿粉共同作用下的减水效应、密实效应、火山灰效应、填充效应以及固化交联作用能够赋予水泥基材料良好的力学性能。体系中水泥水化的主要产物为C—S—H凝胶和水化铝酸钙,而且水化产物多为凝胶体和徼细晶体.环氧树脂固化后。有机物呈网络胶状体。没有氢氧化钙特征峰出现。  相似文献   

8.
研究了矿渣-钢渣-石膏体系在水化早期的反应过程,侧重于分析单独变量条件下早期水化产物的种类、产生时间、相对产生量和微观形貌.结果表明:石膏和钢渣都可以激发矿渣水化,在矿渣-钢渣-石膏胶凝材料体系的早期水化过程中,矿渣、钢渣及石膏能够产生以生成钙矾石为驱动力的协同作用,主要水化产物是钙矾石和C-S-H凝胶.钢渣及钢渣与石膏混合物的极早期水化速度很快,对调节矿渣-钢渣-石膏胶凝材料体系的凝结时间具有重要意义.  相似文献   

9.
研究了硅灰石-硅溶胶浆体的固化过程及机理,结果表明:浆体的初期固化是由于硅灰石胶粒中Ca^2 的溶出,导致硅溶胶的凝胶化;后期固化则存在Ca^2 与溶胶作用形成类似水化硅酸钙产物的过程,硅溶胶中的Ca^2 离子促进硅灰石胶粒中Ca^2 的溶出,从而促进水化硅酸钙的形成。  相似文献   

10.
放射性废物水泥固化体铯固化机理研究   总被引:2,自引:1,他引:2  
采用SEM、AAS等测试方法 ,研究不同沸石掺加量、不同成型方法的沸石基碱矿渣水泥放射性废物固化体Cs 浸出性能和固化体微观结构 ,推理出固化体中Cs 的 3种持留作用 :随矿渣水化进入固化体凝胶结构中 ;被沸石颗粒吸附且被水泥胶体包裹 ;存在于固化体孔隙中 其中固化体对Cs 的持留作用以沸石吸附为主 ,这是因为沸石表面的部分孔隙被水泥胶体所堵塞 ,增强了固化体持留Cs 的能力 ,据此建立了Cs 固化物理模型 ,探讨了Cs 固化机理 对影响固化体Cs 浸出率的 3个主要因素 :温度、沸石颗粒表面孔隙、固化体孔隙率进行了分析 ,进而合理解释了固化体中Cs 的浸出行为  相似文献   

11.
【目的】研究水泥取代率对地聚物-水泥固化土石混合体抗压强度和破坏形态的影响,揭示地聚物-水泥对土石混合体的固化机理。【方法】通过无侧限抗压强度试验、含水率测定试验、扫描电镜试验和X射线衍射试验,探究水泥取代率对偏高岭土-矿渣-水泥基地聚物固化土和粉煤灰-矿渣-水泥基地聚物固化土抗压强度、破坏形态、含水率、微观形貌和矿物成分的影响及它们随龄期的变化规律。【结果】水泥取代率为0%~20%时,固化土抗压强度与水泥取代率成正比。偏高岭土-矿渣-水泥基地聚物和粉煤灰-矿渣-水泥基地聚物的最优水泥取代率为20%,此时其相应固化土的14 d抗压强度分别为2 510.90、2 532.14 kPa;随着水泥取代率的增加,固化土破坏模式由鼓胀破坏逐渐转变为劈裂破坏;养护时间为14 d时,20%水泥取代率的固化土的含水率最低,水化反应最充分;反应生成的水化硅酸钠(N-A-S-H)和水化硅铝酸钙(C-S-H)凝胶在孔隙中起胶结和填充作用。【结论】适当的水泥取代率可以提高水化反应速率,促进水化产物的生成,有效提升地聚物-水泥对土石混合体的固化效果。  相似文献   

12.
碱-矿渣水泥浆体的碳化过程研究   总被引:2,自引:0,他引:2  
针对碱-矿渣水泥水化产物中不存在Ca(OH)2且碳化比较严重的现象,选择水玻璃和NaOH作碱组分,采用X-射线衍射仪和可变真空扫描电子电镜研究了碱-矿渣水泥浆体的碳化产物和微观形貌,结合氮吸附方法分析了碳化对碱-矿渣水泥浆体孔结构的影响.结果表明:碱-矿渣水泥浆体的碳化是CO2直接和水化硅酸钙(C-S-H)凝胶发生作用的结果,碳化后生成的碳酸钙主要以方解石的形式存在;碳化后,C-S-H凝胶的Ca与Si原子比降低,浆体的比表面积增大,平均孔径降低,而累积孔体积的变化情况和碱组分有关.  相似文献   

13.
采用矿渣、钢渣、脱硫石膏和普通硅酸盐水泥联合制备固化剂,对黄河冲积粉土进行改良固化,在提高工业废渣资源化利用的同时,以期解决黄河冲积粉土强度低、水稳性差等路基工程应用难题。首先,基于无侧限抗压强度试验、水稳性试验和干湿循环强度试验探究固化剂掺量和养护龄期对固化粉土强度的影响规律,确定固化剂的最优掺量;其次,针对最优固化剂掺量的固化粉土,开展不同龄期固化粉土的渗透性试验,同时结合核磁共振测试、矿物成分分析以及电镜扫描,揭示固化粉土的矿物成分及微观结构的演化规律。研究结果表明:矿渣-钢渣-脱硫石膏-水泥固化粉土的最优掺量为干燥粉土质量的10%;固化粉土的水化产物主要为水化硅酸钙凝胶(C-S-H)和钙矾石晶体(AFt);水化产物的粒间胶结和填充作用使土颗粒间形成致密结构,增强了固化粉土的力学强度、水稳性和抗渗性能。  相似文献   

14.
研究水泥熟料超细粉磨后的结构和性能变化,以及对掺加一定量超细矿渣和硅灰后水化系统的性能影响。测定了水泥浆体的物理力学性能,应用DTA,SEM,XRD分析了不同龄期硬化水泥浆体中水化产物及其微观结构,利用压汞测孔仪测定了硬化水泥浆体的孔结构参数。结果分析认为:水泥熟料超细粉磨后,二水石膏已难以控制其凝结速度;系统中加入一定量的超细矿渣和硅灰后,硬化水泥浆体与骨料的界面层富集结晶Ca(OH)2的现象消失,硬化水泥浆体的孔分布更加均匀细微。  相似文献   

15.
为探讨矿渣粉改性粉煤灰地聚物砂浆在不同温度下的强度变化规律及改善机理,进行了不同矿渣粉掺量的粉煤灰地聚物在多种温度下的力学性能试验,并分析了其微观形貌及孔结构特征。结果表明:粉煤灰基地聚物在室温固化时的抗压强度和抗弯强度均较小,掺入矿渣粉或高温固化都可以改善粉煤灰地聚物的力学性能,但高温固化导致后期抗压强度变化变缓;当不掺矿渣粉时,地聚物砂浆的流动度为232 mm,但凝结时间超过8 h;随着矿渣粉掺量的增加,地聚物的流动度逐渐降低,凝结时间也变短;高温固化和掺入矿渣粉都可以显著减小粉煤灰地聚物材料的孔隙率;室温固化时,地聚物砂浆中含有大量宏观孔隙,并且粉煤灰地聚物砂浆中基本不存在胶凝孔隙;高温固化后,粉煤灰地聚物砂浆中以毛细孔隙体积占比最大,而改性砂浆则以胶凝孔隙和过渡孔隙的居多;从试件内部的微观形貌图可见,掺入矿渣粉后地聚物砂浆变得更加致密;基于热力学关系的分形模型可以在压汞法测量的孔径范围内很好地描述地聚物砂浆孔结构的分形维数,其次为孔轴线模型;地聚物砂浆孔结构的分形维数大于2.0,在粉煤灰地聚物中掺入矿渣粉可以改善地聚物的孔隙结构,提升固化温度则使得地聚物的孔隙结构变得复杂。  相似文献   

16.
为研究全固废复合胶凝材料在固化硫酸盐渍土中的应用,采用正交试验方法对全固废复合胶凝材料固化盐渍土的无侧限抗压强度进行试验,探讨各影响因素对全固废复合胶凝材料固化盐渍土力学性能的影响,并运用扫描电子显微镜scan-ning electron microscope、热重分析等微观分析方法,对不同矿渣占比的固化盐渍土微观形貌和水化产物进行分析.结果表明:全固废复合胶凝材料固化盐渍土的力学强度较天然盐渍土有显著提高;对养护28 d龄期的正交试验无侧限抗压强度结果进行极差、方差和二阶混合料规范多项式分析可知,固化盐渍土无侧限抗压强度与火山灰质材料掺量、矿渣占比呈正相关性,与电石渣掺量呈负相关性,无侧限抗压强度计算模型与实测值具有较好的一致性;由微观分析可知随着矿渣占比的增加,养护28 d龄期的固化盐渍土试件内水化产物逐渐增多,试件内大孔隙含量逐渐减少,进而使得固化盐渍土无侧限抗压强度随矿渣掺量的增加而增大.  相似文献   

17.
研究了偏硅酸钠激发矿渣-粉煤灰的水化机理.通过显微形貌探究了在不同碱当量下胶凝材料的微观结构和水化产物的变化.结果表明,掺入偏硅酸钠可提高胶凝材料的强度,增加浆体中C-S-H含量.此外,掺入8%偏硅酸钠可使水化产物不断增加,浆体内部结构更加致密化,浆体内部微裂纹减少.  相似文献   

18.
超细矿渣高性能混凝土试验及水化研究   总被引:1,自引:0,他引:1  
用超细矿渣粉等材料制备了C80以上的高性能混凝土,并研究了超细矿渣水泥的水化。结果表明,超细矿渣粉不仅可提高新拌混凝土的工作性能,而且能大幅度提高水泥及混凝土的力学性能。研究还发现,超细矿渣的水化活性较高,在水泥水化早期就大量生成胶凝性水化产物,从而减少了水泥石中的Ca(OH)2含量,改善水泥石及混凝土的微观结构。  相似文献   

19.
为了研究辐照对放射性废树脂特种水泥固化体的影响,确保树脂水泥固化体在长期处置过程中的稳定性,该文重点比较了树脂固化体经过不同剂量的γ射线辐照前后抗压强度和冻融实验后强度以及核素浸出率的变化规律,并通过扫描电镜比较了辐照前后固化体水化产物微观结构的变化情况。研究结果表明:辐照会使固化体抗压强度降低,损失幅度随剂量的增加而增大,并会加剧冻融实验引起的固化体强度损失程度;辐照后固化体对浸出离子的吸附能力降低;微观结构中,铝胶胶团含量相对减少,辐照可能引起其水化产物中高铝凝胶的分解,从而导致对核素滞留能力的降低和浸出率的升高;在累积辐照剂量小于10~5 Gy时,辐照不会对固化体稳定性产生严重影响。  相似文献   

20.
填埋场改性污泥防渗层渗透与变形特性   总被引:1,自引:1,他引:0  
为了研究水泥、煤矸石、黏土、纤维对污泥进行改性固化的规律,评价其作为填埋场衬垫防渗材料的可行性,通过干缩开裂实验,观察固化污泥的失水、体积收缩、开裂情况。采用低温氮气吸附试验,检测固化污泥试样的孔隙结构与比表面积。采用环境岩土柔性壁渗透试验,检测固化污泥的渗透系数。采用三轴剪切试验仪,检测固化污泥的抗剪强度。通过试验发现:污泥固化体的含水率变化范围为22.08%~150.48%;且随着含水率的降低,开裂因子逐渐增大。随着污泥固化体的体积收缩率增大,开裂因子总体呈增大趋势。污泥固化体的孔径曲线呈"M"型,双肩峰集中出现在3~5 nm和7~8.5 nm区间段。随着时间的增加,污泥固化体的渗透系数呈下降趋势,且存在较明显的波动,试验结束时分布在4.49×10~(-8)~5.32×10~(-8)cm/s。污泥固化体的污泥与水泥、煤矸石等固化材料的掺入量较为适宜时,生成的水化产物多,黏聚力较大,内摩擦角相应较小,抗剪能力较强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号