共查询到19条相似文献,搜索用时 109 毫秒
1.
应用SBR法对毛皮废水进行了处理。讨论了SBR法硝化与反硝化的规律,并且对硝化和反硝化阶段进行了动力学分析,确定了反应级数,并求得反应速率。 相似文献
2.
在对硝化基础反应动力学和反硝化基础反应动力学分析的基础上,建立了一体式膜生物反应器中的同步硝化反硝化反应动力学模型。通过一体式膜生物反应器运行的实验数据和模型推导,求得的硝酸盐饱和常数KNO3要远远高于传统单级反硝化过程中的硝酸盐饱和常数,从量化的角度解释了同步硝化反硝化现象。 相似文献
3.
不同曝气方式SBR短程硝化试验研究 总被引:5,自引:0,他引:5
在常温条件下(20~25℃),分别采用间歇曝气SBR(1号)和连续曝气SBR(2号),研究4个不同初始DO质量浓度(0.5~1.0,1.5~2.0,2.5~3.0和3.5~4.0 mg/L)下生活污水的亚硝化。研究结果表明:2个反应器的COD去除效果相差不大;运行50 d后,1号反应器的氨氮去除容积负荷比2号的大,且4个DO质量浓度下亚硝化率均在90%以上,而当2号反应器的DO质量浓度为3.5~4.0 mg/L时,亚硝化率由90%逐渐下降至72.9%,后采用间歇曝气经15 d成功使其亚硝化率恢复至90%。间歇曝气反应器内污泥中亚硝化菌的相对数量比连续曝气反应器的多,硝化菌则比连续曝气反应器的小。间歇曝气在节省能耗的同时可以稳定实现较高的氨氧化速率和亚硝化率,是常温生活污水SBR短程硝化长期高效稳定运行的有效手段。 相似文献
4.
采用SBR处理模拟低碳污水,考察了同步硝化反硝化(SND)过程中氮的变化规律,在此基础上结合硝化、反硝化动力学和物料平衡原理,建立了SND过程的动力学模型.结果表明,SND过程中的硝酸盐饱和常数KD高于常规单级反硝化过程的常数.由动力学分析可知,反硝化过程是SND过程的控制步骤,保持较高的硝酸盐浓度或梯度有利于稳定的SND过程. 相似文献
5.
曝气生物滤池废水深度处理同步硝化反硝化机理及影响因素 总被引:2,自引:0,他引:2
证明曝气生物滤池废水深度处理时在适当的条件下能够进行同步硝化反硝化脱氮,影响同步硝化反硝化的因素有温度、溶解氧(DO)、pH值和CODCr/N比等.通过实验得出在温度20~28℃,DO为0.8~1.5mg/L,pH值7.2~8,CODCr/N为6.9~9.2下,同步硝化反硝化作用效果最明显,TN的去除率为最大,平均值分别为63.4%,66.9%,65.5%和67.2%. 相似文献
6.
亚硝酸积累条件下反硝化脱氮过程动力学模型 总被引:6,自引:0,他引:6
采用序批式反应器,对以乙酸钠和新鲜生活垃圾沥滤液为外加碳源的反硝化系统进行了反硝化过程动力学研究,为优选碳源提供理论依据.在系统亚硝酸盐暂时积累条件下,分别采用分段零级动力学模型和基于Monod方程的动态模型,拟合试验数据,并求算相应的动力学参数.结果表明,乙酸钠碳源系统反应初始阶段,脱氮速率要比以垃圾沥滤液为碳源高出38%.分段动力学得到的表观碳氮比(速率比)表明,亚硝酸盐降解阶段是反硝化的限制步骤.基于Monod方程的微分方程组模型,能够很好地拟合两种不同碳源条件下反硝化过程硝酸盐、亚硝酸盐质量浓度的变化,参数值与实际运行效果一致,所得动力学参数能够反映碳源利用效率. 相似文献
7.
研究了采用前置反硝化曝气生物滤池工艺直接对生活污水进行处理,回流比对该工艺处理效果的影响。在一定范围内增大回流比有利于提高系统总脱氮率。根据试验结果,建议回流比选择2:1。在此条件下,COD去除率大于80%;NH4+-N去除率大于97%;总脱氮率大于75%。 相似文献
8.
在常温、低氨氮浓度下,通过控制DOC质量浓度在0.5~1.2 mg/L,在SBR反应器中成功实现短程硝化与同时硝化反硝化工艺的耦合;亚硝酸累积率达到78.5%,总氮损失率达到28.1%;研究了有机负荷和pH对耦合工艺的影响,结果表明,有机物负荷增加有利于提高耦合工艺总氮的去除率,负荷从0.11上升到0.47时,TN的去除率从18.0%上升至41.9%;本实验条件下耦合工艺最佳pH在7.6左右. 相似文献
9.
对无回流间歇曝气系统在沉淀期间进水的可行性和进水效应进行了研究.试验结果表明,沉淀期间进水对上清液(即出水)未造成明显扰动,因而是可行的.而且,沉淀期间进水所产生的效应与生物选择器的作用类似,即有助于磷的释放,将污泥层中的NO-3—N还原,抑制丝状膨胀. 相似文献
10.
膜法A/O工艺较泥法更具优越性,研究了此工艺缺氧段A段的动力学模式为,由此式可知脱氮效率与填料比表面积成正比,与进出水NO_3~--N质量浓度差的平方根成正比,并通过实验室小试验证模型。 相似文献
11.
12.
13.
对微生物硝化、反硝化的机理及作用的相关酶及近年来的研究热点问题进行了探讨。综述了分子生态技术在微生物群落结构分析的操作步骤及应用情况, 分析了荧光原位杂交、变性梯度凝胶 电泳及末端限制性片段多态性技术的原理、操作流程、优缺点及其在硝化和反硝化中的应用。以往 的研究表明分子生态技术已成为环境中硝化和反硝化过程及机理研究的有力工具。 相似文献
14.
同步硝化与反硝化工艺同传统的生物脱氮工艺相比,可以节约氧和碳源的耗量,大大降低设备运行费用,具有很大的发展前途.结合国内外研究,主要从生物学、生物化学和微环境理论的角度对这一技术进行了综述,对一些同步硝化反硝化新工艺进行了介绍. 相似文献
15.
采用人工模拟的高氨氮城市污水,对厌氧/好氧/缺氧(A/O/A)序批式活性污泥法反应器内短程同步硝化/反硝化耦合除磷过程的实现及稳定性进行研究.对一个典型周期内水质变化情况进行测定和分析,系统对化学需氧量(COD)、氨氮(NH+4-N)、总氮(TN)、总磷(TP)去除率分别为94.8%,97.6%,89.4%,93.1%.调节曝气量以改变溶解氧质量浓度,结果表明:随着溶解氧质量浓度升高,亚硝化率由97%下降至20%;溶解氧质量浓度过低,会抑制好氧阶段的吸磷过程;溶解氧质量浓度过高,会影响好氧、缺氧阶段磷的有效吸收. 相似文献
16.
渗滤液循环回灌填埋层同时去除其中的碳、氮污染物的前提是层内必须存在好氧、兼性、厌氧混合代谢条件.通过对比间歇强制通风和强化自然通风这两种使填埋层内形成混合代谢条件的实验发现:两者均可使填埋层具有去除回灌渗滤液中化学耗氧量CODCr和氨氮的能力,间歇强制通风的去除负荷为CODCr165 g/(m2*d),氨氮7.5 g/(m2*d);强化自然通风则为CODCr480 g/(m2*d),氨氮16 g/(m2*d).填埋层对氨氮硝化形成的硝态氮的反硝化能力与回灌渗滤液中生物可利用碳BC与氨氮之比BC/N有关,当此比值大于4.5时,间歇强制通风填埋层可达到几乎完全的反硝化水平.但强化自然通风填埋层中,即使当BC/N大于7.5时,流出液中硝态氮仍大于50 mg/L,主要原因是层内存在持续有氧的区域,阻碍了对其的完全反硝化. 相似文献
17.
采用有效容积为330L的氧化沟模型,以城市污水为研究对象,研究了Orbal氧化沟中的同时硝化反硝化生物脱氮现象.实验结果表明,在不投加外碳源和不设硝化液内回流的条件下,通过控制氧化沟溶解氧浓度及分布,可以实现氧化沟外沟道内的同时硝化反硝化生物脱氮,TN去除率最高可达86%.分析认为,溶解氧浓度及分布是氧化沟同时硝化反硝... 相似文献
18.
以模拟废水为对象,在传统的流化床反应器内,将活性污泥和经驯化的反硝化污泥按适当比例混合后,用聚乙烯醇(PVA)加适当添加剂将其包埋,并对短程硝化反硝化脱氮进行了研究.结果表明,在进水NH4+-N平均为53.60mg/L,COD为281.19mg/L,HRT12h,调控温度、溶解氧、pH等,出水亚硝化率和TN去除率分别可达95%和85%以上,短程硝化反硝化脱氮较理想.当进水COD含量从150mg/L增加到750mg/L,TN去除率从73.66%提高到96.79%.适合包埋颗粒短程硝化反硝化脱氮的最佳溶解氧浓度约为4.0mg/L.当pH一直维持在8.0左右,温度从30℃降到25℃过程中,短程硝化反硝化并未遭破坏.当温度维持在25℃,pH从8.0降到7.5,连续运行约5个周期后,短程硝化反硝转变为全程的硝化反硝化. 相似文献
19.
通过控制膜生物反应器(MBR)中溶解氧(DO)浓度、碳氮比(C/N)、污泥浓度(MLSS)和水力停留时间(HRT)等摸索了实现同步硝化反硝化的工艺条件,同时对好氧反应器中实现同步硝化反硝化的机理进行了探讨.化学需氧量(COD)在250 mg/L左右,C/N为10~30∶1,MLSS为5 g/L,HRT为5.0 h,DO为0.6~0.8 mg/L时,总氮去除率达86.0%,取得了良好的总氮去除效果,表明由于好氧反应器中缺氧区的存在,控制好操作条件可以实现同步硝化反硝化.体系中氨氮、硝态氮浓度的变化与总氮去除的关系说明短程反硝化现象的存在,而且在实现同步硝化反硝化过程中发挥着重要的作用. 相似文献