首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
混凝土结构收缩应力问题研究   总被引:5,自引:0,他引:5       下载免费PDF全文
扼要阐述了混凝土干缩变形及其分析方法,采用两种方法研究混凝土干缩应力的变化规律,对于估算法,其结果比较可靠,而计算湿度场方法仅仅是处于探讨阶段。当考虑混凝土干缩作用时,结构的应力值要大于不考虑干缩的影响,特别是对于薄壁或薄板结构,通过有限元仿真,对上海地铁地下车站混凝土框架结构的干缩应力进行了计算,在一定程度上揭示了结构干缩应力的变化趋势。  相似文献   

2.
干湿循环下混凝土湿度与变形的测量   总被引:2,自引:0,他引:2  
为考察干湿循环环境下混凝土内部湿度和变形的关系,该文采用自然干燥和液态水湿润的方法,模拟了混凝土的干湿循环环境,试验测定了3个强度等级的混凝土试件在干湿循环下自由变形和内部相对湿度随干湿龄期的变化。试验结果表明:混凝土在干湿循环下表现出干缩湿胀的特性;混凝土水灰比越小,干湿循环下其自由变形和内部相对湿度的变化幅度越小;混凝土干燥阶段内部湿度和变形的变化速率明显低于湿润阶段;混凝土强度等级越高,自干燥作用越明显,相应的变形越大;随着龄期的增长,密封条件下混凝土的变形逐渐超越干湿循环下混凝土变形,并且混凝土强度等级越高,该现象越明显。  相似文献   

3.
干缩裂缝多出现在混凝土养护结束后的一段时间或是混凝土浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,且这种收缩是不可逆的。混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。相对湿度越低,水泥浆体干缩越大。干缩裂缝通常会影响混凝土的抗渗性,  相似文献   

4.
干燥过程中马尾松板材干燥应变的研究   总被引:3,自引:0,他引:3  
用木材干缩元件、弹簧和阻尼器构建马尾松板材干燥应变模型,并采用改进的切片方法来分析干燥过程中木材的自由干缩、瞬时弹性应变、黏弹性应变和机械吸附应变的变化规律。在模型中引入与木材含水率密切相关的干缩元件,解释各层的干缩差异是产生干燥应力的源动力。结果表明,黏弹性应变和弹性应变具有相同的变化规律;机械吸附应变由应力和含水率变化共同作用产生,木材干燥结束后产生的机械吸附应变是干燥各时期机械吸附应变的叠加;机械吸附应变的大部分在干燥前期产生。表层干缩差异达到最大的时间可以作为判断干燥基准变更的时间,当表层干缩差异达最大值以后可以加快干燥速馊。  相似文献   

5.
针对半刚性基层材料施工硬化阶段因湿度变化引起的开裂问题,采用弹性地基梁力学模型,讨论了干缩应变、地基反应模量、地基水平摩擦阻力系数等因素对湿度干缩应力、湿度翘曲应力的影响.分析结果表明,湿度干缩应力系数随水平摩擦阻力的增大呈S型曲线增加,最终收敛于1;而湿度翘曲应力系数是相对刚度半径(即梁长与刚度半径比值)的函数,随着相对梁长的增大略超过1后趋近于1.最后,计算了常用水泥掺量下水泥稳定碎石在施工硬化阶段的湿度应力,依据开裂判据,硬化阶段水泥稳定碎石基层很容易产生早期开裂.  相似文献   

6.
纳米混凝土的制备及其干缩性能研究   总被引:2,自引:0,他引:2  
采用试验研究与理论分析相结合的方法,在普通混凝土中分别掺入不同量的纳米二氧化硅(Nano-SiO_2)和纳米碳酸钙(Nano-CaCO_3),制备出新型纳米混凝土.通过微观电镜试验分析了不同纳米材料对混凝土内部结构变化的影响规律.通过干缩性能试验对比研究了不同纳米材料对混凝土干缩率的影响及作用机理,并确定出最佳掺入量.研究结果表明:Nano-SiO_2和Nano-CaCO_3均能改变混凝土的干缩率,但对干缩率改变的效果不尽相同;掺入Nano-SiO_2的混凝土试件,其干缩率随掺量的变化比掺入Nano-CaCO_3试件的干缩率变化更为明显,当Nano-SiO_2的掺量为0.5%或Nano-CaCO_3的掺量为2.0%时,混凝土试件的干缩率最小.研究还发现,混凝土的干缩与混凝土自身密实程度、弯月面产生的数量以及内部湿度存在着动态平衡的关系.  相似文献   

7.
半刚性基层材料抗裂性评价方法   总被引:15,自引:1,他引:15  
半刚性基层材料由于具有优良的路用性能而常作为沥青路面和水泥混凝土的基层,其质量好坏会直接影响道路面的质量和寿命,针对半刚性基层常出现的收缩裂缝病害,现有的评价指标有干缩系数,温缩系数,干缩抗裂系数,温缩抗裂系统,这些系数都只限于应变,没有涉及应力,提出了干缩能抗裂系数,温缩能抗裂系数,从能量的观点把应力和应主结合起来有效地评价半刚性基层材料抗裂性。  相似文献   

8.
基于内部湿度试验的早龄期混凝土水分扩散系数求解   总被引:4,自引:0,他引:4  
为了求解干燥条件下混凝土内部水分分布,提出了一种早龄期混凝土水分扩散系数的求解方法。试验测定混凝土内部相对湿度随时间的变化,求解水汽扩散的非线性方程,获得了干燥过程中混凝土水分扩散系数与相对湿度(或水分含量)的数量关系。计算结果证明:水分扩散系数随含水量的增加而非线性增大;相对湿度90%以上时扩散系数随湿度变化显著,90%~40%时扩散系数随湿度变化趋缓,40%以下时基本不变。  相似文献   

9.
混凝土的裂缝较为普遍,尽管在施工中采取各种措施,但裂缝仍然时有出现。因此本文就对施工中混凝土裂缝的成因和处理措施进行探讨。1.裂缝的成因混凝土中产生裂缝有多种原因,主要是温度和湿度的变化、混凝土的脆性和不均匀性、以及结构不合理、原材料不合格(如碱骨料反应)、模板变形、基础不均匀沉降等。混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面引起拉应力。后期在降温过程中,由于受到基础或老混凝土的约束,又会在混凝土内部出现拉应力。气温的降低也会在混凝土表面引起很大的拉应力。当这些拉应力超出混凝土的抗裂能力时,即会出现裂缝。许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。混凝土是一种脆性材料,抗拉强度是抗压强度的1/10左右,短期加荷时的极限拉伸变形只有(0.6-1.0)×10- 4,长期加荷时的极限位伸变形也只有(1.2-2.0)×10-4,由于原材料不  相似文献   

10.
基于孔结构模型的混凝土干缩变形理论分析   总被引:4,自引:0,他引:4  
根据混凝土多孔材料的特性,基于孔结构模型的假设,依据毛细管张力理论,初步完成了混凝土早龄期干缩变形的理论分析,并综合考虑了水灰比、环境和养护等多方面因素的影响。同时,采用三维有限元和有限差分的方法,基于混凝土内部湿度场分布的计算,建立了相关的计算模型,并通过与其他学者的实验结果的对比分析,来验证该模型的正确性。  相似文献   

11.
为了研究早龄期混凝土板的水分迁移规律,建立了早龄期混凝土路面板在外部干燥条件下的1维水分迁移模型,推导了基于Adomian分解法的求解任意边界条件下的非线性水分迁移模型的初边值问题的近似解析解,并与早龄期混凝土板的干燥过程试验数据和Crank-Nicolson有限差分法数值解的结果进行了比较.结果表明,Adomian分解法的收敛速度非常快,是一种有效的求解任意边界、初始和扩散系数下的混凝土板干燥过程的偏微分方程的方法.  相似文献   

12.
摘 要:本文在单面干燥条件下应用自行研制混凝土早期收缩应力测试仪及非接触式混凝土收缩变形测试仪测试了水灰比为0.26、0.40高强混凝土早期弹性模量、自由收缩变形,通过改进环向约束试验观测了受约束试件内部的收缩应力及应力梯度,并在上述试验基础上研究了单面干燥条件下受约束高强混凝土早期开裂趋势。结果表明,高强混凝土水灰比越小,单面干燥条件下早期自由收缩变形、弹性模量、受约束状态下内部收缩应力增长越快,干燥表面越易发生塑性收缩开裂,早期开裂趋势越明显。  相似文献   

13.
为研究环向约束条件下高强混凝土早期开裂趋势,在单面干燥条件下应用非接触式混凝土收缩变形测定仪测试了水灰比为0.26,0.31和0.40试件的早期自由收缩变形.通过静压试验测试了试件早期弹性模量发展,通过改进环向约束试验观测了环向约束条件下各试件内部的收缩应力及应力梯度.结果表明,水灰比越小,单面干燥条件下受约束高强混凝土早期开裂危险性越高,开裂发生时间越早;开裂时间、开裂时弹性模量在很大程度上决定了早期开裂特点.  相似文献   

14.
单面干燥条件下受约束高强混凝土的早期开裂研究   总被引:2,自引:0,他引:2  
在单面干燥条件下应用自行研制的混凝土早期收缩应力测试仪及非接触式混凝土收缩变形测试仪测试了水灰比为0.26、0.40的高强混凝土的早期弹性模量和自由收缩变形,通过改进的环向约束试验观测了受约束试件内部的收缩应力及应力梯度,并在上述试验基础上研究了单面干燥条件下受约束高强混凝土的早期开裂趋势.结果表明,高强混凝土水灰比越小,单面干燥条件下的早期自由收缩变形、弹性模量、受约束状态下的内部收缩应力增长越快,干燥表面越容易发生塑性收缩开裂,早期开裂趋势越明显.  相似文献   

15.
以菜豆种子为对象,建立了物料的内部水分扩散模型。通过边界条件的处理把反映物料干燥过程动态特性的实验含水率曲线与物粒颗粒内部水分扩散相结合,提出了一种较准确的确定物料颗粒在非稳态脱水过程中内部水分扩散系数和分析内部水分分布及其动态特性的方法。研究表明,种子内部水分的扩散过程表现出强烈的非均质性与非稳态性,种皮是最主要的传质阻力之一,种子内部不同组成部分的扩散系数是不同的。计算结果及与实验曲线拟合的统计分析表明,样本决定了系数达0.990,所以在此基础上确定的扩散系数是可靠的,进行的物料颗粒内部水分分布的计算保证了与物料非稳态干燥过程的同步性。  相似文献   

16.
白菜种子热泵变温最佳干燥过程   总被引:1,自引:0,他引:1  
为了研究白菜种子热泵变温干燥过程的传热传质机理,利用非稳态干燥动力学方程分析了变温干燥方式在提高干燥速率方面的优势.提出了几种合理可行的热泵变温干燥方式,引入间歇干燥比例系数概念通过对各种变温干燥方式下的水分扩散过程模拟,权衡各种干燥方式在能耗、水分扩散均匀性以及种子生命活力等方面的性能,认为间歇干燥比恒温干燥和变温干燥中的三角形变换、正弦变换的循环干燥方式对种子酶活性和生命力损害小.综合性能较好的最佳变温干燥过程的间歇干燥比例系数为1/3.  相似文献   

17.
早龄期混凝土表面开裂问题的试验研究   总被引:1,自引:0,他引:1  
研究太阳辐射和风速影响下早龄期混凝土表面开裂问题.用400mm×400mm×160mm混凝土试件,构成一个半无限的平面模型,进行了两组试件的比较.第一组试件直接暴露在阳光下,第二组试件暴露在空气中但有遮阳设施,这两组试件的大气温度与相对湿度等基本一致,但经风条件与遮阳条件不同.试验发现:第一组试件的表面产生了毛细裂纹,第二组试件则没有.温湿度观测值显示:第一组试件温度变幅很大,湿度梯度更大,第二组则相对较小.综合分析认为:过大的湿度梯度和过高的温度变幅是混凝土表面产生收缩和约束裂缝的决定性因素.  相似文献   

18.
The influential depth of moisture transport in a concrete surface subject to drying-wetting cycles was analyzed numerically. The moisture transport was described by a diffusion model with different diffusivities for drying and wetting. A finite difference scheme was developed to solve the partial differential equations The influential depth was then investigated numerically for initially saturated and unsaturated concretes exposed to drying-wetting actions in marine environments using an equilibrium time ratio concept. The equilibrium time ratio was calculated numerically for a saturated condition and the moisture influential depth is shown to be a linear function of the square root of the drying time. However, this equilibrium time ratio does not exist for an unsaturated condition and the moisture influential depth depends on the initial saturation as well as the drying-wetting time ratio. The results indicate that this model gives more realistic predictions of moisture transport of in situ structural concrete and its durability.  相似文献   

19.
为了解水泥混凝土路面板早龄期湿度场性状特征,采用瑞士SHT15型数字化温湿度传感器,针对不同施工季节、不同基层与面板接触边界,进行水泥混凝土板早龄期湿度场的室外路面板监测试验研究.监测发现:水泥混凝土路面板湿度场在铺筑完之后依次经历饱和阶段、湿度下降阶段和波动阶段,各阶段的发生时刻和幅值取决周围气象条件和边界条件;通常工况下板底湿度高于板顶湿度,沿板厚方向形成湿度梯度,夏季施工路面早龄期板顶板底最大湿度差可达8%.此外,分析发现水泥混凝土路面相比其它混凝土结构,由于属于薄板结构,湿度场的影响和控制应额外注意混凝土路面基层边界条件与施工季节等因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号