首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对上海市颗粒物的污染和防治问题,利用2014年4月14日—2015年3月24日10个国控监测点的PM2.5和PM10小时数据及对应的气象因素资料,以PM2.5质量浓度占PM10质量浓度的比例为研究对象,使用聚类分析和相关性分析PM_(2.5)/PM_(10)的时空分布特征.结果表明:P2.5和PM10的季节高低为冬春秋夏,PM_(2.5)/PM_(10)的季节分布在不同区域存在差异性.PM_(2.5)/PM_(10)的日变化呈现双峰型趋势,峰值出现在05:00和14:00左右,上午PM_(2.5)/PM_(10)高于下午.颗粒物质量浓度及PM_(2.5)/PM_(10)具有明显的"周末效应",这与车辆通行政策与人类作息时间变动相关.在空间分布上,颗粒物质量浓度及PM_(2.5)/PM_(10)均表现为背景站浦西站浦东站.  相似文献   

2.
利用南昌市PM_(2.5)浓度数据和地面观测资料数据,通过基于CMAQ模式开发的污染源示踪系统对2017年10月23日至11月16日南昌市PM_(2.5)来源进行模拟分析。结果显示:南昌市2017年秋冬秸秆焚烧旺季期间,PM_(2.5)本地贡献率为42%,周边省市对南昌市PM_(2.5)浓度影响较大的主要为江西省以北的省市,江西省其他地市对南昌市影响最大的为九江;重污染过程期间,南昌市及周边地市秸秆燃烧是PM_(2.5)的重要来源。  相似文献   

3.
利用电脑微激光粉尘仪对西安市南二环2013年春季5月70 m高度范围内的可吸入颗粒物(PM_(10))质量浓度进行了4个昼夜的监测。观测发现,西安南二环PM_(10)质量浓度昼夜变化可分为5个阶段:第1阶段在8:00—10:00,PM_(10)平均质量浓度范围0.056 mg/m~3;第2阶段在12:00—14:00,PM_(10)平均质量浓度为0.075 mg/m~3;第3阶段在16:00—18:00,PM_(10)平均质量浓度为0.058 mg/m~3;第4阶段在20:00—22:00,PM_(10)平均质量浓度为0.070 mg/m~3;第5阶段在0:00—6:00,PM_(10)平均质量浓度为0.038 mg/m~3。高分辨率地垂向观测结果表明,西安5月PM_(10)质量浓度垂向变化可分为3种类型:第1种类型,随着高度的增加PM_(10)质量浓度增加幅度居中,平均递增率为0.048μg/m;第2种类型,随着高度的增加PM_(10)质量浓度幅度增加最大,递增率为0.065μg/m,且波动变化明显;第3种类型,随着高度的增加PM_(10)质量浓度增加幅度最小,递增率为0.013μg/m。西安南二环5月PM_(10)质量浓度在1 m高度处最低,平均为0.048 mg/m~3;4~46 m高度范围内质量浓度较低,平均为0.051 mg/m~3;在49~67m高度范围内质量浓度较高,平均为0.052 mg/m~3;在70m处最高,平均为0.056 mg/m~3。观测期间PM_(10)质量浓度与4 m处的温度之间为显著正相关(y=240.73x+12.305),与4、7、10 m高度处的湿度为显著负相关(y=-606.42x+82.08)。  相似文献   

4.
利用南昌市2016年4月~2017年3月8个监测点的PM_(10)和PM_(2.5)质量浓度的监测数据,通过聚类分析探讨了大气颗粒物PM_(10)、PM_(2.5)的污染状况和不同功能区间的变化规律.结果表明:2016年南昌市大气颗粒污染物中,细颗粒物(PM_(2.5))较可吸入颗粒物(PM_(10))超标情况更严重;从时间角度看,PM_(10)和PM_(2.5)浓度表现为冬季春季/秋季夏季的季节性变化趋势;从空间角度看,表现为商业交通居住混合区交通区文教区居住区风景区的变化规律;PM_(2.5)/PM_(10)比值变化特征提示冬季可吸入颗粒物中细颗粒物所占比重最大,春季和秋季次之,夏季最小;在影响因素中,监测点大气颗粒物的浓度受交通环境的影响最大,受居民日常生活排污的影响次之.  相似文献   

5.
利用晋安区五个空气质量监测站2017年的PM_(2.5)监测数据,对晋安区PM_(2.5)质量浓度变化特征进行分析,结果表明,晋安区PM_(2.5)浓度年均值和99.7%的日均值达到《环境空气质量标准》中的二级标准;PM_(2.5)浓度呈现明显的季节变化特征,春、冬季浓度值大于夏、秋季浓度值;而日变化趋势则呈现双峰形态;春、冬季PM_(2.5)/PM_(10)比值高于夏、秋季。  相似文献   

6.
利用南宁市地面8个监测站与中分辨率成像光谱仪(MODIS)数据反演得到的气溶胶光学厚度值作为数据源,运用回归分析法,选取月、季、年三种时间尺度,分别对PM_(2.5)、PM_(10)浓度与AOD值进行相关性研究。结果表明,PM_(2.5)与AOD相关性好于PM_(10),月尺度PM_(2.5)和PM_(10)与AOD值相关性强,除个别月份外,R2均在0.7以上;季尺度PM_(2.5)和PM_(10)与AOD值相关性,随季节变化显著,但R2均在0.5以上;年尺度PM_(2.5)和PM_(10)与AOD值拟合,采用一元二次模型,R2在0.5以上。上述结果表明AOD在月尺度上与地面站点污染物监测数据PM_(2.5)和PM_(10)的相关性最为显著,故可在月尺度上通过卫星遥感影像反演的AOD推算地面PM_(2.5)和PM_(10)的空间浓度场。  相似文献   

7.
鉴于肺部可吸入颗粒物PM_(2.5)对人体的危害,利用多元分析及时间序列的方法将PM_(2.5)浓度变化划分为稳定部分(由分子内部的作用引起浓度变化)和不稳定部分(由外部环境因素,即温度,风力,风向及天气等)进行预测.收集乌鲁木齐7个监测站点2014年11月至2015年3月(冬季)每天的PM_(2.5),PM_(10),CO,NO_2,O_3,O_3(8 h),SO_2及天气等相关因素数据,对PM_(2.5)浓度建立预测模型并进行结果分析.相关分析表明:户外PM_(2.5)与PM_(10),CO,NO_2和SO_2具有较高的相关性.对平稳部分利用指数平滑模型预测PM_(2.5)浓度,得到最好的平滑指数是0.32.主成分回归(PCR)模型用于预测PM_(2.5)浓度的不稳定性成分,得到R2值为0.803.最终,将2015年3月至2015年5月的数据利用5种性能指标检验模型,结果表明该模型方法预测效果较好,有一定的实用价值.  相似文献   

8.
利用MODIS数据研究区域大气PM_(2.5)浓度分布是环境动态监测的有效方法。获取美国NASA发布的分辨率为3km的MOD光学厚度产品;提取2016年1月至2017年7月期间长沙市10个大气监测站点的PM_(2.5)浓度数据进行相关性分析,建立PM_(2.5)浓度与AOD之间的线性、幂函数以及指数函数3种相关性模型;引入湿度影响因子建立大气PM_(2.5)浓度订正模型,采用PM_(2.5)浓度订正模型订正PM_(2.5)浓度。结果表明:湿度订正提高了PM_(2.5)与AOD相关性,幂函数相关性模型的方差值相对其他2种模型较好,运用幂函数相关性模型研究长沙市MODIS气溶胶光学厚度与PM_(2.5)浓度的相关性较好。  相似文献   

9.
为研究郑州市PM_(10)和PM_(2.5)中多环芳烃(PAHs)的污染特征、来源及对健康的影响,于2013年4—12月在郑州大学采样点同步采集大气中的PM10和PM_(2.5).利用气相色谱-质谱联用仪对16种优先控制的PAHs进行定量分析,在此基础上运用Ba P毒性当量法对PAHs进行健康风险评估,并采用比值特征法揭示PAHs的可能来源.结果表明:郑州市大气颗粒物PM_(10)和PM_(2.5)中PAHs的单体质量浓度随季节变化特征明显,基本上都呈现冬季秋季春季夏季的趋势,其中4~6环化合物是PAHs的主要成分.郑州市四季大气颗粒物Ba P质量浓度均超过国家空气质量标准限制,存在潜在健康风险.经过比值特征法分析得出,郑州市大气颗粒物PM_(10)和PM_(2.5)中PAHs主要来自燃煤源、石油化工源、生物质燃烧源和机动车尾气源.  相似文献   

10.
以重庆市沙坪坝区国控空气自动监测点为例,研究了细颗粒物(PM_(2.5))和可吸入颗粒物(PM_(10))污染现状和相关性.结果表明:颗粒物,尤其是细颗粒物(PM_(2.5)),是影响城市环境空气质量的主要污染因子,尤其是在春、冬季节易导致污染天气.大气扩散条件不佳,颗粒物质量浓度越高,细颗粒物(PM_(2.5))在可吸入颗粒物(PM_(10))中的比重也越高.细颗粒物(PM_(2.5))和可吸入颗粒物(PM_(10))具有较好的统计相关性,两者可能具有同源性,在环境空气污染中的变化规律相似,有可能遵循相同的迁移转化规律,可以进行协同治理.  相似文献   

11.
依据AOD与PM_(2.5)质量浓度的关系,利用TERRA卫星的MODIS AOD资料、中国区域气溶胶特性综合联网观测与研究计划和中国地区太阳分光观测网的地基数据,研究了四川盆地MODIS AOD精度及2017年研究区域17个市县级站点PM_(2.5)质量浓度的反演问题.结果表明,重庆、盐亭、贡嘎山站点地基观测AOD与MODIS AOD的线性相关系数分别为0.64、0.86、0.87,满足美国国家航空航天局精度要求,且与PM_(2.5)质量浓度呈较高的线性相关,由此构建了四川盆地订正后的AOD与PM_(2.5)质量浓度的拟合方程,反演了2017年四川盆地分辨率达到县级城市的PM_(2.5)质量浓度空间分布,年均质量浓度为38.7μg/m3,呈现盆地中部高、四周低的空间分布格局,与仅用地市级分辨率的实际PM_(2.5)质量浓度监测数据研究得到的四川盆地2017年平均PM_(2.5)质量浓度50.8μg/m3相比,发现仅用地市级站点的实际PM_(2.5)质量浓度监测数据反映四川盆地区域污染状况会造成明显高估现象.  相似文献   

12.
利用2014年-2015年九江市环境监测站污染物浓度监测资料以及常规的气象观测资料,统计分析近两年九江市PM_(2.5)浓度的时间变化特征及其与气象要素的关系。结果表明:1)2014-2015年年九江市年平均污染日数为68 d,其中首要污染物为PM_(2.5)的天数占64%,重度污染日的首要污染物均为PM_(2.5);2)PM_(2.5)日变化表现为白天扩散晚上堆积,PM_(2.5)的月平均峰值主要出现在10月至次年1月以及5月底至6月初;3)秋冬季的污染主要由污染物水平输送造成,其次出现在不利于污染物扩散的稳定大气层结条件下。春夏交替期的污染主要由秸秆燃烧造成;4)PM_(2.5)浓度与能见度、温度风速、降水量呈显著负相关,而且弱降水有利于污染的加剧,高相对湿度更有利于出现重污染天气。  相似文献   

13.
随着我国社会经济的快速发展,大气颗粒物污染逐渐成为影响我国城市居民健康的重要危险因素.以流行病学各项研究成果为基础,参考浓度选取环境空气质量标准(GB3095-2012)的二级浓度限值作为标准,利用泊松回归比例危险模型定量评价可归因于PM_(10)和PM_(2.5)污染的居民健康效应,并结合各健康终端的单位经济价值,采用环境价值评估方法估算相关的健康经济损失.结果表明,目前大气颗粒物污染已对京津冀地区的居民带来了较大的健康危害和经济损失:PM_(10)污染所造成的健康经济损失总额为1 399.3(1 237.1-1 553.1)亿元,相当于2013年该地区生产总值的2.26%(1.99%-_(2.5)0%),PM_(2.5)污染引起的健康经济损失总量达1 342.9(1 068.5-1 598.2)亿元,占2013年该地区生产总值的2.16%(1.72%-_(2.5)8%),其中慢性支气管炎与早逝是健康损失的主要来源.研究结果可为基于健康效应的大气颗粒物污染控制政策的制定提供一定的参考依据,对控制大气污染、保护人民群众身体健康具有重要意义.  相似文献   

14.
卫星观测不仅能反映全球尺度的大气污染状况,也能从城市等区域尺度上监测大气污染物的变化.本文基于2004-2013年MODIS气溶胶标准产品,利用PM_(2.5)卫星遥感估算的统计模型,统计分析了郑州地区的PM_(2.5)质量浓度的年际及季节变化特点,有助于深入研究郑州地区细颗粒物污染水平变化.研究发现,在空间上,郑州地区PM_(2.5)高值区主要集中在郑州市市辖区、中牟县、新郑市、荥阳市以及巩义市西北等地区,低值区主要分布于登封市和巩义市南部的山地地区.在时间上,2004-2011年整个郑州地区PM_(2.5)质量浓度总体呈现逐年增长的趋势,直到2011年达到峰值(108.59μg/m3).2011年之后,该地区PM_(2.5)污染状况有所好转,但仍处于重度污染状态.季节变化方面,PM_(2.5)高值通常出现在冬季(149.28μg/m3),秋季次之,春、夏季该地区PM_(2.5)质量浓度较低(81.71μg/m3).研究结果表明,利用卫星数据可以有效地分析郑州地区的PM_(2.5)时空分布特征,为该地区的PM_(2.5)污染治理提供有力的数据和技术支撑.  相似文献   

15.
与平原地区城市相比,由于山地城市地形地貌的因素,城市道路具有坡度大、弯道多、路窄、起伏大等特点。车辆在道路上行驶相较于平原存在巨大差异,使得这种道路更容易产生交通污染.为明确山地城市道路长上坡路段汽车尾气与细飘尘排放浓度及其影响因素,特选取重庆主城多条具有代表性的道路采集汽车尾气与细飘尘浓度值,采用交通系统仿真分析方法分析车流量、区域差异、横向距离等对汽车尾气与细飘尘浓度的影响。结果表明:夜间汽车尾气与细飘尘(PM_(2.5))浓度较日间差异性显著;整体上看,随着横向距离的增加,汽车尾气与细飘尘浓度不断衰减,根据实验结果,日间PM_(2.5)浓度先衰减,当处于横向距离6~10 m之间PM_(2.5)浓度出现向上波动,最后下降至稳定值;夜间PM_(2.5)浓度呈波动式衰减,最后趋于稳定;车流量的大小不是决定山地城市日间上坡路段道路旁PM_(2.5)数值大小的最直接原因;同一个城市的不同区域,道路两旁空气中的PM_(2.5)浓度的含量存在巨大的差异。  相似文献   

16.
为分析2014年武清区PM_(2.5)污染的变化特征,运用统计学方法对全年PM_(2.5)常规日值监测数据进行分析,结果发现:2014年武清区大气环境中PM_(2.5)年均浓度为92μg/m3,PM_(2.5)日均浓度分布区间较宽,主要分布区间为20~120μg/m3,占样本总数的71.1%。PM_(2.5)污染呈现夏季及春末、秋初较轻,冬季污染严重的特征。PM_(2.5)浓度变化"周末效应"表现较为突出的季节是春季,夏季、秋季和冬季并未出现"周末效应"。研究结果有利于认识武清区PM_(2.5)污染的时间变化规律,从而正对性开展大气污染防控。  相似文献   

17.
对娄底市环境空气中的PM_(10)、PM_(2.5)质量浓度进行自动监测,并统计分析其分布的均匀性.结果表明,短时间看,PM_(2.5)较PM_(10)分布均匀;长时间看,PM_(10)、PM_(2.5)分布均匀性相当;在4个不同的功能区,PM_(10)、PM_(2.5)分布无明显的差异性和规律性.  相似文献   

18.
为探究太原市冬季PM_(2.5)成因,利用位于太原市大气环境综合观测研究站的单颗粒气溶胶质谱仪(SPAMS),结合气象数据,对2019年1月1日-1月31日期间的PM_(2.5)化学组成进行了分析,定量评估研究期间PM_(2.5)的源贡献率。结果表明:研究期间太原市PM_(2.5)日均浓度达到110μg/m~3,PM_(2.5)的颗粒类型主要由有机碳颗粒、混合碳颗粒和元素碳颗粒组成,其中,有机碳颗粒占比(34.7%)最高;PM_(2.5)污染的主要贡献源为燃煤、机动车尾气、工业工艺,占比分别为27.8%、19.7%和17.8%,特别是在PM_(2.5)质量浓度较高时段,燃煤和机动车尾气排放对污染的贡献较大,因此太原市冬季PM_(2.5)污染控制应以燃煤、机动车尾气为主。  相似文献   

19.
为了解北京城区灰霾期间PM_(2.5)中的水溶性离子的污染特征及来源,于2014年1月9日至2014年1月17日在首都师范大学对大气PM_(2.5)样品进行了连续采集,并利用离子色谱法对样品中的水溶性离子进行了分析.结果表明,PM_(2.5)中的水溶性离子质量浓度的日均值为(113.40±77.46)μg·m-3;10种水溶性离子(F~-,NO_2~-,SO_4~(2-),NO_3~-,Cl~-,NH_4~+,Ca~(2+),Na~+,Mg~(2+)和K~+)的总浓度的平均值为(65.34±50.06)μg·m~(-3),其中水溶性离子总量约占PM_(2.5)质量浓度的57%.重污染期间水溶性离子表现出爆发性增长,NO_3~-和SO_4~(2-)的增长率分别为7.57μg·h-1和8.12μg·h-1.结合气象因素发现当温度偏高,气压较弱,相对湿度较高,风速小且以偏南风为主时,PM_(2.5)及其中的水溶性离子质量浓度都维持在较高水平.主成分分析(Principal Component Analysis,PCA)结果也表明,随PM_(2.5)质量浓度逐渐增加的过程中,污染来源为人为二次污染、化石燃料燃烧、交通排放和工业排放,同时还可能存在生物质燃烧和粉尘及废物焚烧的共同影响.  相似文献   

20.
利用2014-2018年北京市春节前后交通污染监测站的PM_(2.5)和NO_2浓度数据,采用浓度特征对比、PM_(2.5)/CO比值等方法,初步评估春节期间烟花禁燃措施和机动车减排的效果,探讨烟花燃放及气象条件对空气质量的影响。结果表明:PM_(2.5)和NO_2浓度变化特征不同,春节期间PM_(2.5)平均浓度为103.6μg/m~3,高于非春节期间25.3%;而NO_2平均浓度为53.8μg/m~3,低于非春节期间19.5%,主要受到机动车减排的影响。2014年春节期间PM_(2.5)浓度最低,2015-2018年PM_(2.5)浓度呈逐年下降趋势;NO_2浓度无明显年际变化特征。烟花爆竹燃放对PM_(2.5)浓度影响显著,对NO_2浓度影响较小,除夕期间对PM_(2.5)浓度的最大贡献值达283.4~704.1μg/m~3。2018年北京市五环内禁燃烟花措施对交通站PM_(2.5)污染改善明显,PM_(2.5)浓度较前4年均值下降25.2%,NO_2浓度仅下降2.4%;禁燃对燃放高峰期PM_(2.5)浓度有明显削峰作用,无有利扩散气象条件下,除夕期间烟花燃放对PM_(2.5)浓度的最大贡献值仍较前4年下降45.0%。气象条件对春节期间PM_(2.5)浓度变化的影响作用较NO_2显著,有利扩散气象条件是2014年春节期间PM_(2.5)污染较非春节期间明显改善的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号