首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Synapses are central stages for neurotransmission. Neurotransmitters are released from the presynaptic membrane of one neuron, and bind to the receptors accumulated at the postsynaptic membrane, followed by the activation of the other neuron. The strength of a synapse is modified depending on the history of the previous neurotransmissions. This property is called synaptic plasticity and is implicated in learning and memory. Synapses contain not only the components essential for neurotransmission but also the signalling molecules involved in synaptic plasticity. The elucidation of the molecular structures of synapses is one of the key steps to understand the mechanism of learning and memory. Recent studies have revealed postsynaptic density (PSD)-95/synapse-associated protein (SAP) 90 as a core component in the architecture of synapses. In this review, we summarize up-to-date information about PSD-95/SAP90 and its interacting proteins, and the organization of synapses orchestrated  相似文献   

2.
Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia–neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS.  相似文献   

3.
Sphingolipids in mammalian cell signalling   总被引:12,自引:0,他引:12  
Sphingolipids and their metabolites, ceramide, sphingosine and sphingosine-1-phosphate, are involved in a variety of cellular processes including differentiation, cellular senescence, apoptosis and proliferation. Ceramide is the main second messenger, and is produced by sphingomyelinase-induced hydrolysis of sphingomyelin and by de novo synthesis. Many stimuli, e.g. growth factors, cytokines, G protein-coupled receptor agonists and stress (UV irradiation) increase cellular ceramide levels. Sphingomyelin in the plasma membrane is located primarily in the outer (extracellular) leaflet of the bilayer, whilst sphingomyelinases are found at the inner (cytosolic) face and within lysosomes/endosomes. Such cellular compartmentalisation restricts the site of ceramide production and subsequent interaction with target proteins. Glycosphingolipids and sphingomyelin together with cholesterol are major components of specialised membrane microdomains known as lipid rafts, which are involved in receptor aggregation and immune responses. Many signalling molecules, for example Src family tyrosine kinases and glycosylinositolphosphate-anchored proteins, are associated with rafts, and disruption of these domains affects cellular responses such as apoptosis. Sphingosine and sphingosine-1-phosphate derived from ceramide are also signalling molecules. In particular, sphingosine-1-phosphate is involved in proliferation, differentiation and apoptosis. Sphingosine-1-phosphate can act both extracellularly through endothelial-differentiating gene (EDG) family G protein-coupled receptors and intracellularly through direct interactions with target proteins. The importance of sphingolipid signalling in cardiovascular development has been reinforced by recent reports implicating EDG receptors in the regulation of embryonic cardiac and vascular morphogenesis. Received 16 May 2001; received after revision 29 June 2001; accepted 3 July 2001  相似文献   

4.
5.
Fungal disease is an increasing problem in both agriculture and human health. Treatment of human fungal disease involves the use of chemical fungicides, which generally target the integrity of the fungal plasma membrane or cell wall. Chemical fungicides used for the treatment of plant disease, have more diverse mechanisms of action including inhibition of sterol biosynthesis, microtubule assembly and the mitochondrial respiratory chain. However, these treatments have limitations, including toxicity and the emergence of resistance. This has led to increased interest in the use of antimicrobial peptides for the treatment of fungal disease in both plants and humans. Antimicrobial peptides are a diverse group of molecules with differing mechanisms of action, many of which remain poorly understood. Furthermore, it is becoming increasingly apparent that stress response pathways are involved in the tolerance of fungi to both chemical fungicides and antimicrobial peptides. These signalling pathways such as the cell wall integrity and high-osmolarity glycerol pathway are triggered by stimuli, such as cell wall instability, changes in osmolarity and production of reactive oxygen species. Here we review stress signalling induced by treatment of fungi with chemical fungicides and antifungal peptides. Study of these pathways gives insight into how these molecules exert their antifungal effect and also into the mechanisms used by fungi to tolerate sub-lethal treatment by these molecules. Inactivation of stress response pathways represents a potential method of increasing the efficacy of antifungal molecules.  相似文献   

6.
Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches.  相似文献   

7.
Purkinje neurons, the sole output of the cerebellar cortex, deliver GABA-mediated inhibition to the deep cerebellar nuclei. To subserve this critical function, Purkinje neurons fire repetitively, and at high frequencies, features that have been linked to the unique properties of the voltage-gated sodium (Nav) channels expressed. In addition to the rapidly activating and inactivating, or transient, component of the Nav current (INaT) present in many types of central and peripheral neurons, Purkinje neurons, also expresses persistent (INaP) and resurgent (INaR) Nav currents. Considerable progress has been made in detailing the biophysical properties and identifying the molecular determinants of these discrete Nav current components, as well as defining their roles in the regulation of Purkinje neuron excitability. Here, we review this important work and highlight the remaining questions about the molecular mechanisms controlling the expression and the functioning of Nav currents in Purkinje neurons. We also discuss the impact of the dynamic regulation of Nav currents on the functioning of individual Purkinje neurons and cerebellar circuits.  相似文献   

8.
Water often acts as a critical reactant in cellular reactions. Its role can be detected by modulating water activity with osmotic agents. We describe the principles behind this 'osmotic stress' strategy, and survey the ubiquity of water effects on molecular structures that have aqueous, solute-excluding regions. These effects are seen with single-functioning molecules such as membrane channels and solution enzymes, as well as in the molecular assembly of actin, the organization of DNA and the specificity of protein/DNA interactions.  相似文献   

9.
The recent identification of candidate receptor genes for sweet, umami and bitter taste in mammals has opened a door to elucidate the molecular and neuronal mechanisms of taste. Drosophila provides a suitable system to study the molecular, physiological and behavioral aspects of taste, as sophisticated molecular genetic techniques can be applied. A gene family for putative gustatory receptors has been found in the Drosophila genome. We discuss here current knowledge of the gustatory physiology of Drosophila. Taste cells in insects are primary sensory neurons whereupon each receptor neuron responds to either sugar, salt or water. We found that particular tarsal gustatory sensilla respond to bitter compounds. Electrophysiological studies indicate that gustatory sensilla on the labellum and tarsi are heterogeneous in terms of their taste sensitivity. Determination of the molecular bases for this heterogeneity could lead to an understanding of how the sensory information is processed in the brain and how this in turn is linked to behavior.Received 12 May 2003; received after revision 9 June 2003; accepted 13 June 2003  相似文献   

10.
Cancers of the intestine are amongst the most frequent tumors in the Western countries. They arise through the stepwise, progressive disruption of cellular signalling cascades which control cell proliferation, survival and differentiation. The proto-oncogene K-ras functions as an important molecular switch linking several of these signalling pathways. Activating mutations of K-ras are found in about 50% of colorectal cancers, but their contribution to tumor initiation and progression is still poorly understood. Murine models provide excellent opportunities to identify and define the roles of genes involved in cancer formation and growth in the digestive tract. In this review, I will discuss the biological properties of oncogenic K-ras, its influence on cell signalling and its role in colorectal tumorigenesis based on recently established murine models.  相似文献   

11.
The suppressors of cytokine signalling (SOCS)   总被引:10,自引:0,他引:10  
  相似文献   

12.
Understanding how thousands of different neuronal types are generated in the CNS constitutes a major challenge for developmental neurobiologists and is a prerequisite before considering cell or gene therapies of nervous lesions or pathologies. During embryonic development, spinal motor neurons (MNs) segregate into distinct subpopulations that display specific characteristics and properties including molecular identity, migration pattern, allocation to specific motor columns, and innervation of defined target. Because of the facility to correlate these different characteristics, the diversification of spinal MNs has become the model of choice for studying the molecular and cellular mechanisms underlying the generation of multiple neuronal populations in the developing CNS. Therefore, how spinal motor neuron subpopulations are produced during development has been extensively studied during the last two decades. In this review article, we will provide a comprehensive overview of the genetic and molecular mechanisms that contribute to the diversification of spinal MNs.  相似文献   

13.
Suppression subtractive hybridization performed on Down syndrome (DS) versus control fetal brains revealed differential expression of peroxiredoxin 2 (PRDX2), mapped at 13q12. Peroxiredoxins are antioxidant enzymes involved in protein and lipid protection against oxidative injury and in cellular signalling pathways regulating apoptosis. The under-expression of PRDX2 observed in DS samples was confirmed by realtime PCR (0.73-fold). To test whether decreased expression is associated with enhanced sensitivity of DS neurons to reactive oxygen species, we down-regulated PRDX2 through stable transfections of SH-SY5Y neuroblastoma cells with antisense contructs of the complete PRDX2 coding sequence. In addition, we over-expressed SOD1 and compared the effects of the two genes on cell viability. Cells transfected with either construct showed similar sensitivity to oxidative stress in addition to increased apoptosis under basal conditions and after treatment with oxidative cytotoxic agents. This suggests that the decreased expression of PRDX2 may contribute to the altered redox state in DS at levels comparable to that of the increased expression of SOD1.Received 4 February 2003; received after revision 31 March 2003; accepted 25 April 2003  相似文献   

14.
The mechanisms involved in the development of renal fibrosis are poorly understood. Small Ras GTPases control cell proliferation, differentiation, cellular growth and apoptosis, with cell-specific expression in the kidney. Cytokines, high glucose medium or advanced glycation end-products activate Ras in different renal cells. Increased Ras activation has been found in experimental tubulointerstitial fibrosis. Transforming growth factor-β1 (TGF-β1) and Ras signalling pathways are close related: TGF-β1 overcomes Ras mitogenic effects, and Ras counteracts TGF-β signalling. However, Ras activation is also an intracellular signal transduction point for several molecules (e.g. TGF-β1) involved in kidney damage. Ras isoforms play different roles in regulating extracellular matrix synthesis in fibroblasts and mesangial cells. These data give evidence for a role for Ras in renal fibrosis, but no reviews are available on the role of p21 Ras in this process. Thus, our goal is to review the role of Ras activation and signalling in renal fibrosis. Received 7 June 2007; received after revision 17 September 2007; accepted 1 October 2007  相似文献   

15.
16.
Hypertension (high blood pressure) is a major public health problem affecting more than a billion people worldwide with complications, including stroke, heart failure and kidney failure. The regulation of blood pressure is multifactorial reflecting genetic susceptibility, in utero environment and external factors such as obesity and salt intake. In keeping with Arthur Guyton’s hypothesis, the kidney plays a key role in blood pressure control and data from clinical studies; physiology and genetics have shown that hypertension is driven a failure of the kidney to excrete excess salt at normal levels of blood pressure. There is a number of rare Mendelian blood pressure syndromes, which have shed light on the molecular mechanisms involved in dysregulated ion transport in the distal kidney. One in particular is Familial hyperkalemic hypertension (FHHt), an autosomal dominant monogenic form of hypertension characterised by high blood pressure, hyperkalemia, hyperchloremic metabolic acidosis, and hypercalciuria. The clinical signs of FHHt are treated by low doses of thiazide diuretic, and it mirrors Gitelman syndrome which features the inverse phenotype of hypotension, hypokalemic metabolic alkalosis, and hypocalciuria. Gitelman syndrome is caused by loss of function mutations in the thiazide-sensitive Na/Cl cotransporter (NCC); however, FHHt patients do not have mutations in the SCL12A3 locus encoding NCC. Instead, mutations have been identified in genes that have revealed a key signalling pathway that regulates NCC and several other key transporters and ion channels in the kidney that are critical for BP regulation. This is the WNK kinase signalling pathway that is the subject of this review.  相似文献   

17.
Transient receptor potential (TRP) ion channels have been identified as cellular sensors responding to diverse external and internal stimuli. This review will cover the TRPV subfamily that comprises vertebrate and invertebrate members. The six mammalian TRPV channels were demonstrated to function in thermosensation, mechanosensation, osmosensation and Ca2+ uptake. Invertebrate TRPV channels, five in Caenorhabditis elegans and two in Drosophila, have been shown to play a role in mechanosensation, such as hearing and proprioception in Drosophila and nose touch in C. elegans, and in the response to osmotic and chemical stimuli in C. elegans. We will focus here on the role that TRPV ion channels play in mechanosensation and a related sensory (sub-)modality, osmosensation. Received 2 May 2005; received after revision 30 July 2005; accepted 30 August 2005  相似文献   

18.
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.  相似文献   

19.
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.  相似文献   

20.
Central nervous system myelination requires recognition and signalling processes between neuronal axons and oligodendrocytes. Complex cellular rearrangements occur in myelination-competent oligodendrocytes requiring spatio-temporal control mechanisms. Although the molecular repertoire is becoming increasingly transparent, the signalling mechanisms governing myelination initiation are only poorly understood. The non-receptor tyrosine kinase Fyn has been implicated in axon–glial signal transduction and in several cellular processes required for oligodendrocyte maturation and myelination. Here, we review oligodendroglial Fyn signalling and discuss the role of Fyn in axon–glia interaction mediating myelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号