首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
基于Pareto排序算法的多目标演化算法是多目标演化算法所采用的重要方法,本文叙述了多目标演化算法(MOEAs)的有关概念,在分析已有算法的一些性能和特征的基础上,结合演化算法的有关概念,重点基于Pareto排序算法分析了影响多目标演化算法性能的两大方面:求解过程中解集合的多样性、均匀性分布的保持与维护以及解的收敛性,分析了MOEAs设计中需要注意的策略问题以及今后研究的重点.  相似文献   

2.
提出了一种求解多目标优化问题的协同演化算法.新算法改进了Kwee-Bo的协同演化的思想,将混合策略演化规划用于协同演化过程中,混合策略指导算法有效搜索过程,两个种群协同优化目标函数.标准测试函数的数值实验验证了新算法的有效性.  相似文献   

3.
许婧祺 《科技信息》2010,(32):I0115-I0116
近年来,多目标优化问题求解已成为演化计算的一个重要研究方向,而基于Pareto最优概念的多目标演化算法则是当前演化计算的研究热点.多目标演化算法的研究目标是使算法种群快速收敛并均匀分布于问题的非劣最优域。该文在比较与分析多目标优化的演化算法发展的历史基础上,介绍基于Pareto最优概念的多目标演化算法中的一些主要技术与理论结果。此外,指出并阐释了值得进一步研究的相关问题。  相似文献   

4.
多目标进化算法的研究目标是使算法种群快速收敛并均匀分布于问题的Pareto最优前沿面.为此,在比较与分析已有多目标进化算法的基础上,借鉴免疫系统中的克隆选择原理,提出了一种用于多目标优化的克隆选择算法.该方法只对部分当前所得到的Pareto最优解进行进化操作,并选用一种简单的多样性保护机制来保证Pareto最优解具有良好的分布特征.'实验结果表明该方法能够很好地达到Pareto最优前沿面,较好地保持解的多样性,并且具有很快的收敛速度.  相似文献   

5.
针对当前大部分多目标优化演化算法设计复杂、耗时巨大,以及取得的近似Pareto前沿点不够多、分布不均匀、覆盖不完整等问题,提出了一种新的基于粒子群和几何Pareto选择算法的多目标优化PSGPS算法.经过5个测试问题的实验结果表明:该算法使用较低的时间消耗,就能在前沿点个数、前沿点分布均匀性、覆盖完整度等性能指标上都优于当前流行的NSGA2,SPEA2和PESA等多目标优化演化算法.  相似文献   

6.
提出了一种混合演化算法求解多目标优化问题.演化算法是解决多目标优化问题的有效方法,在全局优化问题中具有很好的鲁棒性,但其局部搜索性能有待改善.Hooke and Jeeves方法是一经典的局部搜索算法,将其与演化算法结合求解多目标优化问题,提高了解的收敛质量,因而从整体上提高了算法的性能,并且测试结果也说明了该算法的可行性.  相似文献   

7.
针对多目标优化问题,传统进化算法维护种群多样性的方法主要依赖于共享函数,但其小生境半径难以进行有效地设置。该文提出一种改进的求解多目标优化问题的进化算法,新算法引入了近邻函数准则(NFC),将其用于选择过程,可以从种群中选择出较好的个体,并确保种群的多样性。此外,新算法中融入了一种基于近邻函数准则的Pareto候选集的维护方法,利用这种方法可以有效地维护候选解集中个体的多样性。对所提出的算法,从时间和空间复杂度进行了理论分析。对一组典型优化问题的测试表明:该文提出的算法具有较高的搜索性能,解集分布的多样性与收敛性均较理想。  相似文献   

8.
为了使公交车辆的发车间隔得到优化,根据客流量的变化,建立了以乘客和公交企业运营费用最小为目标的公交车辆发车间隔优化模型,并采用一种多目标演化算法(MOPEA)来求解模型.该算法通过粒子系统从非平衡状态达到平衡状态的理论来定义Rank函数,从而使得所有个体在每次迭代过程中均能参与杂交、变异等演化操作,最终求得发车间隔的全局最优解,从而避免传统演化算法中出现的陷入问题的局部解的现象.同时,保留了目标函数的多样性,使相向的多目标优化问题得到了一个折中的最优解,即Pareto最优解.最后通过实例验证了该算法比传统演化算法更具优越性.  相似文献   

9.
将多目标属性决策方法中的ELECTRE法引入到多目标优化进化算法中,提出了一种新的多目标优化算法.采用辅助群体来存储进化过程中的非劣个体,并且采用与SPEA-Ⅱ相同的适应值分配策略来保证解的良好分布性.此外,构造出一种新的超序关系对个体进行排序,证明了该超序关系比Pareto优劣关系弱,利用此超序关系,能增强进化过程中的选择压,加快收敛速度.数据实验结果表明,该算法能很好地收敛到Pareto最优,有效地保持解的多样性.  相似文献   

10.
提出一种基于分解的、改进的多目标蚁群算法。该算法首先利用Tchebycheff聚合方法将整个Pareto最优前沿的逼近问题分解为一定数量的单目标优化子问题,然后利用蚁群算法同时求解这些子问题。为使解集均匀分布在Pareto前沿,采用基于试探的聚类方法对解集聚类;依据解集的分布重置分解策略中的权重向量集,使其适配于特定的Pareto前沿;蚂蚁按照对应的权重距离被分组,同一组蚂蚁共享一个信息素矩阵,该矩阵容纳学习到Pareto前沿子区域的位置信息;每个蚂蚁求解一个子问题,每个蚂蚁拥有自己的启发式信息矩阵;每个蚂蚁拥有多个邻居,蚂蚁选取邻居中的最优解来更新当前解;蚂蚁依据小组信息素,当前解和启发式信息构建新的解。引入自适应变异算子,动态调整蚂蚁邻居的个数,提高算法的收敛速度和解的质量。将该算法与其他相关算法在标准的双旅行商问题进行性能对比,证明该算法有效。  相似文献   

11.
刘淳安 《河南科学》2008,26(6):631-635
给出了一类定义在离散时间(环境)空间上、自变量的维数随环境可发生改变的一类动态多目标优化问题(DDMOP)的新解法.该方法把DDMOP转化成了两个目标的动态多目标优化问题,在一种环境变化判断规则下提出了解DDMOP的一种新进化算法(DDMOEA).计算机仿真表明,新算法能有效跟踪并求出DDMOP在不同环境下数量较多、质量较好且分布均匀的Pareto最优解.  相似文献   

12.
现实中存在许多大规模多目标优化问题(Large-scale Multi-objective Optimization Problem,LSMOP),它们对传统的多目标进化算法(Multi-objective Evolutionary Algorithm,MOEA)提出了挑战,有关LSMOP的研究已成为多目标优化领域的研究热点之一。本文系统分析了近年来提出的各种大规模多目标进化优化算法(Large-scale Multi-objective Optimization Evolutionary Algorithm,LSMOEA),根据这些算法的主要思想和技术特点将它们粗略地分成4种类型,即基于协同进化(Cooperative Coevolution,CC)、基于决策变量分析、基于问题重构以及其他方法,并对今后LSMOP的研究方向提出建议,以期将LSMOP的研究引向深入。  相似文献   

13.
针对一个Pareto局部搜索(PLS)算法在解决多目标组合优化问题中所得到的解集与初始点的选取有关,提出该算法的改进。改进算法从初始解开始进行PLS搜索产生一组改进解集VF,然后对VF中的所有解再进行PLS搜索,如此重复直到满足终止条件。实例计算表明,PLSⅠ算法和算法Ⅱ能得到很好的解且解的质量优于PLS算法。  相似文献   

14.
用粒子群优化算法求解多目标问题容易陷入局部最优,为此本文提出了一种分组粒子群多目标优化算法。该算法将决策空间分成Q个子空间,每个子空间随机的分配N个粒子,这Q个粒子群分别在各自的空间进行独立搜索。为保证每个种群的搜索多样性和遍历性,用混沌序列对各组粒子位置进行初始化,同时对各组进行基于聚集距离的粒子择优进化。由典型多目标函数的优化实验结果表明,经过适当的分组,该算法能迅速逼近非劣最优解集,效果令人满意。  相似文献   

15.
龙娟 《广西科学》2022,29(2):301-307
针对目前基于正则性辅助的多目标优化算法缺少局部信息以及模型参数设置对多目标优化算法的影响问题,本研究提出一种基于正则性辅助的多目标优化进化算法(Regularity Assisted Multi-objective Optimization Evolutionary Algorithm, RAMEA)。该方法将高斯采样和基于邻域的交配重组结合并用于子代重组,同时使用k-均值聚类方法获取流形结构信息,将种群划分为K个聚类,用K个聚类的均值向量建立高斯概率模型,从中抽取K个后代,然后将取样解作为父代添加到每个集群中去交配生成其他子代解。实验对比结果表明,研究提出的基于正则性辅助的多目标优化进化算法明显优于其他算法,其参数灵敏度和有效性表现更加突出。  相似文献   

16.
为了获得良好的双足机器人步行模式,提出了以步行过程中机器人的稳定性、移动性和能耗为目标的步态规划多目标优化方法.该方法基于倒立摆模型产生基本步态,并使用罚函数法和改进的强度Pareto进化算法(SPEA2)在可行域中求得基于基本步态的Pareto解集,从而找出最优解.最后在Matlab6.5仿真环境下进行步态仿真,并将...  相似文献   

17.
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcomings, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time. Foundation item: Supported by the National Natural Science Foundation of China(60073043, 70071042, 60133010) Biography: Shi Chuan( 1978-), male, Master candidate, research direction; intellective computation, evolutionary computation.  相似文献   

18.
19.
针对供应链网络优化领域中的混合流水作业调度问题提出了一种新的多目标演化优化算法。给出了这类问题的通用优化模型,在此基础上,提出了基于流程的矩阵基因编码方案,动态适应度分配机制,并引入小生境保优策略构造了算法过程,利用收敛进程参数分析了算法的收敛性能。性能分析和算例实验表明算法对于高维多目标优化问题是有效的,且能够以较快的速度收敛。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号