首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 234 毫秒
1.
针对电除尘器靠近收尘极板存在高质量浓度粉尘气流的事实,采用电除尘器末端加装吸风口,将靠近极板的气流强制等速吸入并进行高效净化,可以显著提高电除尘的收尘效率.为了准确描述电除尘器出口断面粉尘质量浓度分布的规律,从而得到吸风口吸入风量与除尘器除尘效率提高量之间的数量关系,采用有限差分法对电场粒子二维输运方程进行数值计算.得到电场各断面粉尘的分布结果,通过与实验模型实际测试得到断面浓度分布结果进行比较二者吻合较好,证明建立的输运方程正确,采用的数值计算方法可行.依据对实际电除尘器出口断面粉尘浓度数值模拟结果.并结合在电除尘器末端极板处加装强制等速吸风口流动规律的理论描述,得到吸风口高度与除尘效率提高量二者之间的数量关系,据此关系可以提出实现保障电除尘器达标排放所必须强制吸入的流量.  相似文献   

2.
ESP电场中高质量浓度区粉尘气流的强制收集技术   总被引:3,自引:0,他引:3  
针对目前电除尘器实际收尘效率偏低的问题,探讨了提高电除尘器收尘效率的相关措施.通过电场粉尘传输模型的数学解析和断面质量浓度实测,表明电场中粉尘分布存在质量浓度梯度,愈靠近极板质量浓度愈高.在电除尘器收尘极板末端用吸风口强制收集高质量浓度粉尘气流,对强制收集的高质量浓度粉尘气流采用高效布袋处理或循环至入口进行二级处理,可以显著降低电除尘器出口粉尘排放量.同时强制吸风可以显著改善由于振打清灰造成的粉尘二次飞扬.对等速吸风口流函数的分析,揭示出吸风高度与收尘效率之间的数学关系.  相似文献   

3.
根据紊流传质原理建立了粉尘粒子传输方程,抛弃了 Cooperman和Leonard 理论的不合理边界条件的假设,确定新的粒子收集效率公式。同时对影响粒子沉降的紊流扩散系数做了精确分析,成功地解析了非 Deutsch 现象;并把粉尘比电阻与粒子收集效率有效地结合起来,克服了在静电收集理论中长期悬而未决的问题,建立了非稳态静电收集理论。  相似文献   

4.
针对选煤厂输运皮带受料点处粉尘污染严重的问题,研究了密封负压袋式控尘机理.通过数值模拟和现场实测相结合的手段,采用颗粒运动方程理论,对各粒级粉尘颗粒分别受气流变化的运移轨迹进行研究.结果表明:粒子追踪技术可以实现除尘效率的量化分析,采取治理方案前后粉尘质量浓度的量化模拟数据和现场实际实测数据相一致,显示全尘和呼吸性粉尘质量浓度除尘效率分别达到95%和93%以上;密封负压袋式控尘方法能有效降低输运皮带受料点区域粉尘质量浓度,保障作业人员的健康.  相似文献   

5.
静电增强纤维过滤是非稳态过程,其压力降随时间变化,但现有研究中定量描述的几乎没有。为得出压力降随时间变化的关系式,在推导静电增强纤维过滤非稳态压力降公式时将压力降视为由滤料及沉降粉尘共同作用而产生,并认为带电后的粉尘受极化力的作用而有形成“粉尘粒子串”的趋势,从而得出静电增强纤维过滤非稳态压力降公式,此式可用于定量计算和定性分析。  相似文献   

6.
为明确横向双极静电除尘器的空气动力增效机理,基于电除尘器的经典效率公式研究了空气动力对横向双极静电除尘器除尘效率的影响。数值模拟结果表明:横向双极电除尘器内荷电粒子的驱进速度是电场驱进速度与空气动力驱进速度之和。极板迎风面的空气动力增效幅度强于背风面,而极板背风面的低速回流区是主要的收尘区。实验结果表明:空气动力驱进速度与电场风速呈二次曲线分布关系。电场风速小于1.5 m/s时,气流运动强化了空气动力增效幅度;而电场风速大于1.5 m/s后,二次扬尘作用减弱了空气动力增效幅度。横向双极电除尘器除尘效率修正公式表明:在横向双极电除尘器结构参数一定的情况下,除尘效率受静电力和空气动力的共同影响。  相似文献   

7.
为深入研究综掘面粉尘运移规律,根据气固相两相流理论,采用离散相模型对综掘工作面粉尘运移规律进行了数值模拟.得出粉尘质量浓度分布存在3个区域:射流区、回流区及涡流区,粉尘质量浓度从掘进面到巷道出口沿程上总体上先快速下降,然后缓慢下降,最终趋于稳定,在掘进机前出现质量浓度峰值.通过分析掘进机对风流流场及粉尘质量浓度分布的影响,得出了掘进机影响下的粉尘分布规律;通过现场实测与模拟结果的对比分析,验证了数值模拟的可靠性,得出了压入式通风风流作用下的粉尘运移规律,为综掘巷道安全、可靠、有效的粉尘防控技术的研究和粉尘质量浓度的降低提供了科学依据.  相似文献   

8.
为了验证立式方筒静电脱雾除尘器对微细粉尘的净化效果,按照工程实际应用要求的规格尺寸,组建了一套单筒脱雾除尘器试验测试系统.在实验系统上分别测试了电场风速、极间电压、电场长度、粉尘质量浓度等因素对模拟烟气中微细粉尘的除尘效果的影响.测试结果表明,在电场风速为2.6 m·s-1,极间电压60 k V,电场长度6 m条件下,立式方筒静电脱雾除尘器对烟气中质量浓度低至50 mg·m-3的粉尘表现出96.66%的除尘效率;并且,对粒径≤2μm的粉尘颗粒仍然具有93%的除尘效率.  相似文献   

9.
电除尘器离子浓度的分布   总被引:3,自引:0,他引:3  
在静电除尘器中,粒子的荷电模型已经确立,电场和其中的离子浓度影响着粉尘的运动、荷电和沉降.实验利用线板式电除尘模型的一个通道,改变施加在电晕极线的电压值和测量点的位置,利用离子浓度测试仪测量收尘极板处离子的浓度,并对离子浓度的分布进行研究,发现当电压升到25 kV以后,离子浓度上升趋势趋于平缓,离子浓度在1013 m-3的数量级.在相同的电压下,收尘极板上正对电晕线A点的离子浓度都是最大的,离子浓度随距A点距离的增大而减小.  相似文献   

10.
在采用高压直流供电的工业电除尘器中,当粉尘颗粒为高比电阻的粉尘进入强场荷电后到达正电的收尘极板时,易形成负电粉尘层吸附在收尘极板上,不易被振打装置清除形成的反电晕现象。分析了高比电阻的粉尘吸附在收尘极板上极板附近电位和附加反向电场的时间变化趋势,建立了电极中荷电粉尘运动方程,进行了多粒子轨迹模拟,结果表明,由于附加反向电场的存在,部分高比电阻的粉尘将无法到达集尘极,据此分析了反电晕现象的原因并且提出了一种解决方案。  相似文献   

11.
根据湍流传质原理 ,对柴油机排气微粒脉冲放电的静电捕集理论进行了研究 ,确定了脉冲放电对微粒在传输过程中的湍流掺混作用 .计算结果表明 ,脉冲放电加大了微粒的湍流掺混程度 ,使微粒的静电捕集效率降低 .为此 ,针对柴油机排气小微粒的静电捕集 ,提出了脉冲—直流双区供电方式 ,它既增大了微粒的荷电量 ,又可降低微粒捕集时的湍流掺混作用 ,可以使微粒的捕集效率得到显著提高 .  相似文献   

12.
二次扬尘对旋风器除尘效率影响分析与对策   总被引:4,自引:1,他引:3  
讨论二次扬尘机理,建立了具有在紊流边界层中由于流速不等而导致粉尘下侧面压力不同所产生的二次扬尘影响下的旋风除尘器分级效率理论计算式。为削弱二次扬尘作用,提出在除尘器内壁设置环缝内衬的增效防磨新方法。 理论分析、半工业试验和工业应用的结果表明:环缝内衬旋风除尘器的除尘效率优于无环缝内衬旋风除尘器的除尘效率。  相似文献   

13.
水帘极板静电除尘模型的收集性能实验研究   总被引:1,自引:0,他引:1  
建立了水帘极板电除尘器实验模型,研究了其电晕特性,以及极距、电场风速、水帘流量、供电电压、初始粉尘浓度等参数对除尘效率的影响.结果表明:水帘形成好坏对V-I特性曲线有一定影响,水帘流量影响形成水帘好坏的程度,因而影响除尘效率;极距对除尘效率有较大影响,极距300mm时除尘效率最高;供电电压对除尘效率的影响较为明显,随着电压的升高除尘效率也升高;风速增大除尘效率降低,初始粉尘浓度对除尘效率影响较小.  相似文献   

14.
荷电粉尘在交变电场中的凝并与收集   总被引:5,自引:0,他引:5  
应用类似于Williams求声凝并系数的方法导出异性荷电粉尘在交变电场中的凝并系数,根据粉尘凝并过程趋于“自保分布”的概念,得出粉尘中位径随凝并时间变化关系式和异极性荷电粉尘在交变电场中的凝并除尘效率近似计算式·提出一种新型双区式电凝并除尘装置,在相同条件下,理论与试验研究结果表明:新型双区电凝并除尘装置的除尘效率不仅高于电除尘器,而且在结构上优于三区电凝并除尘装置·  相似文献   

15.
基于湿式静电除尘器中水滴和亚微米颗粒的运动分析,建立液滴静电场作用下捕捉亚微米颗粒模型,综合亚微米颗粒的电场净化和拦截碰撞净化两种机制,给出了不同捕捉水滴直径下的亚微米净化效率。结果显示湿式静电除尘器对亚微米颗粒的去除效率在98%以上,而且湿式静电除尘器的液滴直径小于湿式机械除尘器中液滴直径,理论分析结果和文献报道实验数据基本一致。  相似文献   

16.
提出了一种旨在削弱或消除静电除尘器(Electrostatic precipitator,简称ESP)振打形成的二次扬尘现象,借以提高ESP的粉尘捕集效率。建立了静电除尘器电晕电场,流场,颗粒荷电及运动场的二维数值模型,借助有限元软件Comsolmultiphysics进行模拟计算,模拟结果与已公开的电晕电场和除尘效率的实验结果吻合较好。通过添加百叶窗结构在阳极板前形成有效的静止空间,保证在振打清灰时颗粒不与主气流混合,降低二次扬尘。分析了3种不同结构的百叶窗结构,并对百叶窗布置形成进行优化。结果表明:添加百叶窗结构能够降低收尘极板附近气流流速在0.1m/s以下;耦合电场、流场、颗粒荷电运动场可以得出,添加百叶窗后,颗粒被捕集时的速度小于0.2m/s,能够有效的控制二次扬尘,提高除尘器的除尘效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号