首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
D Riendeau  E Meighen 《Experientia》1985,41(6):707-713
The properties of enzymatic systems involved in the synthesis of long chain aldehydes and alcohols have been reviewed. Fatty acid and acyl-CoA reductases are widely distributed and generate fatty alcohols for ether lipid and wax ester synthesis as well as fatty aldehydes for bacterial bioluminescence. Fatty alcohol is generally the major product of fatty acid reduction in crude or membrane systems, although reductases which release fatty aldehydes as products have also been purified. The reduction of fatty acid proceeds through the ATP-dependent formation of acyl intermediates such as acyl-CoA and acyl protein, followed by reduction to aldehyde and alcohol with NAD(P)H. In most cases, both the rate of fatty acid conversion and acyl chain specificity of the reaction are determined at the level of reduction of the intermediate. The reduction of fatty acids represents the major pathway for the control of the synthesis of fatty aldehydes and alcohols. Several other enzymatic reactions involved in lipid degradation also release fatty aldehydes but do not appear to play an important role in long chain alcohol synthesis.  相似文献   

2.
Summary The lipid composition of two tuatara eggs was examined. The eggs contained triacylglycerol (80%) and phospholipid (12%) as their major lipid fractions. Fatty acid analyses of the individual lipid classes indicated the presence of essential fatty acids, linoleic and arachidonic acids. The quantity of such acids in the egg yolk lipids would suggest they are factors for survival as illustrated in other species.  相似文献   

3.
Alcohols affect a wide array of biological processes including protein folding, neurotransmission and immune responses. It is becoming clear that many of these effects are mediated by direct binding to proteins such as neurotransmitter receptors and signaling molecules. This review summarizes the unique chemical properties of alcohols which contribute to their biological effects. It is concluded that alcohols act mainly as hydrogen bond donors whose binding to the polypeptide chain is stabilized by hydrophobic interactions. The electronegativity of the O atom may also play a role in stabilizing contacts with the protein. Properties of alcohol binding sites have been derived from X-ray crystal structures of alcohol-protein complexes and from mutagenesis studies of ion channels and enzymes that bind alcohols. Common amino acid sequences and structural features are shared among the protein segments that are involved in alcohol binding. The alcohol binding site is thought to consist of a hydrogen bond acceptor in a turn or loop region that is often situated at the N-terminal end of an alpha-helix. The methylene chain of the alcohol molecule appears to be accommodated by a hydrophobic groove formed by two or more structural elements, frequently a turn and an alpha-helix. Binding at these sites may alter the local protein structure or displace bound solvent molecules and perturb the function of key proteins.  相似文献   

4.
Lipopeptaibols are members of a novel group of naturally occurring, short peptides with antimicrobial activity, characterized by a lipophilic acyl chain at the N-terminus, a high content of the turn/helix forming α-aminoisobutyric acid and a 1,2-amino alcohol at the C-terminus. The amino acid sequences range from 6 to 10 residues and the fatty acyl moieties from 8 to 15 carbon atoms. The peptide portion of lipopeptaibols can be shorter than those of the nonlipidated peptaibols that range from 10 to 19 amino acid residues. The longest peptides fold into a mixed 310/α helix, whereas the shortest peptides tend to adopt a β-turn/sheet structure. Using solution methodologies, a series of analogues of trichogin GA IV was synthesized which allowed determination of the minimal lipid chain and peptide main-chain lengths for the onset of membrane activity and exploitation of a number of spectroscopic techniques aimed at determining its preferred conformation under a variety of conditions and investigating in detail its mode of interaction with, and its effect on, the phospholipid membranes. Received 26 January 2001; received after revision 7 March 2001; accepted 15 March 2001  相似文献   

5.
Summary The epicuticular wax of rice, varietyRibe, comprised n-alkanes, esters, aldehydes and free alcohols. The nalkanes contained 4 major chain lengths, C27, C29, C31 and C33. Triacontanal and dotriacontanal were the major aldehydes. Octacosanol comprised 89% of the free alcohols. The esters were mainly esters of C16 to C24 acids with C22 to C30 alcohols.This research was supported by the Consiglio Nazionale delle Ricerche, Rome.  相似文献   

6.
7.
Firefly luciferase is a member of the acyl-adenylate/thioester-forming superfamily of enzymes and catalyzes the oxidation of firefly luciferin with molecular oxygen to emit light. Knowledge of the luminescence mechanism catalyzed by firefly luciferase has been gathered, leading to the discovery of a novel catalytic function of luciferase. Recently, we demonstrated that firefly luciferase has a catalytic function of fatty acyl-CoA synthesis from fatty acids in the presence of ATP, Mg2+ and coenzyme A. Based on identification of fatty acyl-CoA genes in firefly, Drosophila, and non-luminous click beetles, we then proposed that the evolutionary origin of firefly luciferase is a fatty acyl-CoA synthetase in insects. Further, we succeeded in converting the fatty acyl-CoA synthetase of non-luminous insects into functional luciferase showing luminescence activity by site-directed mutagenesis.  相似文献   

8.
The human alcohol dehydrogenase system is comprised of multiple forms that catalyse the oxidation/reduction of a large variety of alcohols and aldehydes. A transition that results in an Ile308Val substitution was identified in the human ADH2 gene by single-strand conformation polymorphism analysis. Screening a Swedish population revealed that Val308 was the most frequent allele (73%), and site-directed mutagenesis was used to obtain both allelozymes, which were expressed in Escherichia coli for characterisation. Thermostability was assayed by activity measurements and circular dichroism spectroscopy. The results showed that the 308Val substitution decreases protein stability, as compared to the Ile308 variant, an effect also demonstrated during prolonged storage. Ethanol, octanol, 12-hydroxydodecanoic acid and all-trans retinol were used as model substrates and, generally, slightly higher Km values were observed with Val at position 308. Finally, homology modelling, from mouse ADH2, further supported the decreased stability of the Val308 variant and located position 308 in the subunit interface of the molecule and in the vicinity of the active-site pocket entrance. In conclusion, the Ile308Val substitution represents a novel functional polymorphism within the human alcohol dehydrogenase gene cluster that may affect the metabolism of ethanol and other substrates.  相似文献   

9.
The nest cell lining ofHylaeus bisinuatus (Hymenoptera: Colletidae) was shown by high-resolution solidstate [13C]NMR to be composed of lipid polymer and protein. The lipid polymer was shown by reduction and subsequent GC/MS analysis to be comprised of -hydroxy fatty acids (C20, C22, C24 and C26) and fatty alcohols (C16 to C30). The protein portion of the lining had a silk-like amino acid composition.  相似文献   

10.
Summary Fatty acyl moieties present in the female sex pheromone gland of the lightbrown apple moth,Epiphyas postvittana, include the analogues of the two sex pheromone components, (E)-11-tetradecenyl acetate and (E,E)-9,11-tetradecadienyl acetate. Application of deuterium-labelled fatty acids followed by analysis by gas chromatographymass spectrometry showed that biosynthesis of the two pheromone components involved initial 11-desaturation of myristic and palmitic acids respectively.  相似文献   

11.
The elongation and termination steps of protein synthesis are controlled by elongation and release factors, respectively. Elongation factors deliver the aminoacyl tRNA to the ribosomal A site, ensuring the elongation of the nascent polypeptide chain by one amino acid at a time, while release factors recognize the stop codons and trigger the release of the polypeptide from the ribosome. Recently, highresolution crystal structures of ribosomes as well as translation factors on and off the ribosome have contributed a great deal to our understanding of the molecular basis of protein synthesis. This review concentrates on recent developments in our understanding of the elongation and termination steps of protein synthesis, particularly the roles of translation factors and their similarities and differences in the eukaryotic cytosol and prokaryotic systems, through a combination of structural and biochemical studies. Received 25 October 2007; received after revision 5 December 2007; accepted 7 December 2007  相似文献   

12.
Ferroptosis is a recently recognized caspase-independent form of regulated cell death that is characterized by the accumulation of lethal lipid ROS produced through iron-dependent lipid peroxidation. Considering that regulation of fatty acid metabolism is responsible for the membrane-resident pool of oxidizable fatty acids that undergo lipid peroxidation in ferroptotic processes, we examined the contribution of the key fatty acid metabolism enzyme, acyl-CoA synthetase long-chain family member 4 (ACSL4), in regulating ferroptosis. By using CRISPR/Cas9 technology, we found that knockout of Acsl4 in ferroptosis-sensitive murine and human cells conferred protection from erastin- and RSL3-induced cell death. In the same cell types, deletion of mixed lineage kinase domain-like (Mlkl) blocked susceptibility to necroptosis, as expected. Surprisingly, these studies also revealed ferroptosis and necroptosis are alternative, in that resistance to one pathway sensitized cells to death via the other pathway. These data suggest a mechanism by which one regulated necrosis pathway compensates for another when either ferroptosis or necroptosis is compromised. We verified the synergistic contributions of ferroptosis and necroptosis to tissue damage during acute organ failure in vivo. Interestingly, in the course of pathophysiological acute ischemic kidney injury, ACSL4 was initially upregulated and its expression level correlated with the severity of tissue damage. Together, our findings reveal ACSL4 to be a reliable biomarker of the emerging cell death modality of ferroptosis, which may also serve as a novel therapeutic target in preventing pathological cell death processes.  相似文献   

13.
Acyl-CoA thioesterase (ACOT) activities are found in prokaryotes and in several compartments of eukaryotes where they hydrolyze a wide range of acyl-CoA substrates and thereby regulate intracellular acyl-CoA/CoA/fatty acid levels. ACOT9 is a mitochondrial ACOT with homologous genes found from bacteria to humans and in this study we have carried out an in-depth kinetic characterization of ACOT9 to determine its possible physiological function. ACOT9 showed unusual kinetic properties with activity peaks for short-, medium-, and saturated long-chain acyl-CoAs with highest V max with propionyl-CoA and (iso) butyryl-CoA while K cat/K m was highest with saturated long-chain acyl-CoAs. Further characterization of the short-chain acyl-CoA activity revealed that ACOT9 also hydrolyzes a number of short-chain acyl-CoAs and short-chain methyl-branched CoA esters that suggest a role for ACOT9 in regulation also of amino acid metabolism. In spite of markedly different K ms, ACOT9 can hydrolyze both short- and long-chain acyl-CoAs simultaneously, indicating that ACOT9 may provide a novel regulatory link between fatty acid and amino acid metabolism in mitochondria. Based on similar acyl-CoA chain-length specificities of recombinant ACOT9 and ACOT activity in mouse brown adipose tissue and kidney mitochondria, we conclude that ACOT9 is the major mitochondrial ACOT hydrolyzing saturated C2-C20-CoA in these tissues. Finally, ACOT9 activity is strongly regulated by NADH and CoA, suggesting that mitochondrial metabolic state regulates the function of ACOT9.  相似文献   

14.
Chronic ethanol administration was shown to increase catalase and acyl-CoA oxidase activities in rat myocardium but did not alter the activity of liver peroxisomal enzymes. As a result of alcohol consumption a 2-3-fold increase in the level of lipid peroxidation was observed in the heart tissue while in the liver the induction was much less pronounced.  相似文献   

15.
Summary Chronic ethanol administration was shown to increase catalase and acyl-CoA oxidase activities in rat myocardium but did not alter the activity of liver peroxisomal enzymes. As a result of alcohol consumption a 2–3-fold increase in the level of lipid peroxidation was observed in the heart tissue while in the liver the induction was much less pronounced.  相似文献   

16.
17.
Lipid sensing and lipid sensors   总被引:2,自引:0,他引:2  
  相似文献   

18.
Conclusion It has been shown that alteration in the pattern of fatty acids synthesized is not confined to extracts of mammary gland, but can be achieved with extracts of guinea-pig intestinal mucosa. With all these tissues, the proportion of long chain fatty acids synthesized increased with increasing rate of synthesis. The results presented support the suggestion that the chain length of the synthesized fatty acids is, at least in part, controlled by the concentration of malonyl-CoA available to the fatty acid synthetase. The mechanism of this control is now being investigated.
Résumé Nous avons montré que la longueur de la chaÎne des acides gras synthétisés par les extraits solubles de la muqueuse intestinale du cobaye peut Être modifiée. Cette longueur dépend, au moins en partie, de la concentration du malonyl-CoA.
  相似文献   

19.
Sterol carrier protein-2: structure reveals function   总被引:5,自引:0,他引:5  
The multiple actions of sterol carrier protein-2 (SCP-2) in intracellular lipid circulation and metabolism originate from its gene and protein structure. The SCP-x/pro-SCP-2 gene is a fusion gene with separate initiation sites coding for 15-kDa pro-SCP-2 (no enzyme activity) and 58-kDa SCP-x (a 3-ketoacyl CoA thiolase). Both proteins share identical cDNA and amino acid sequences for 13-kDa SCP-2 at their C-termini. Cellular 13-kDa SCP-2 derives from complete, posttranslational cleavage of the 15-kDa pro-SCP-2 and from partial posttranslational cleavage of 58-kDa SCP-x. Putative physiological functions of SCP-2 have been proposed on the basis of enhancement of intermembrane lipid transfer (e.g., cholesterol, phospholipid) and activation of enzymes involved in fatty acyl CoA transacylation (cholesterol esters, phosphatidic acid) in vitro, in transfected cells, and in genetically manipulated animals. At least four important SCP-2 structural domains have been identified and related to specific functions. First, the 46-kDa N-terminal presequence present in 58-kDa SCP-x is a 3-ketoacyl-CoA thiolase specific for branched-chain acyl CoAs. Second, the N-terminal 20 amino acid presequence in 15-kDa pro-SCP-2 dramatically modulates the secondary and tertiary structure of SCP-2 as well as potentiating its intracellular targeting coded by the C-terminal peroxisomal targeting sequence. Third, the N-terminal 32 amino acids form an amphipathic a-helical region, one face of which represents a membrane-binding domain. Positively charged amino acid residues in one face of the amphipathic helices allow SCP-2 to bind to membrane surfaces containing anionic phospholipids. Fourth, the hydrophobic faces of the N-terminal amphipathic a helices along with beta strands 4, 5, and helix D form a ligand-binding cavity able to accommodate multiple types of lipids (e. g., fatty acids, fatty acyl CoAs, cholesterol, phospholipids, isoprenoids). Two-dimensional 1H-15N heteronuclear single quantum coherence spectra of both apo-SCP-2 and of the 1:1 oleate-SCP-2 complex, obtained at pH 6.7, demonstrated the homogenous formation of holo-SCP-2. While comparison of the apo- and holoprotein amide fingerprints revealed about 60% of the resonances remaining essentially unchanged, 12 assigned amide residues underwent significant chemical-shift changes upon oleic acid binding. These residues were localized in three regions: the juncture of helices A and B, the mid-section of the beta sheet, and the interface formed by the region of beta strands 4, 5, and helix D. Circular dichroism also showed that these chemical-shift changes, upon oleic acid binding, did not alter the secondary structure of SCP-2. The nuclear magnetic resonance chemical shift difference data, along with mapping of the nearby hydrophobic residues, showed the oleic acid-binding site to be comprised of a pocket created by the face of the beta sheet, helices A and B on one end, and residues associated with beta strands 4, 5, and helix D at the other end of the binding cavity. Furthermore, the hydrophobic nature of the previously ill-defined C-terminus suggested that these 20 amino acids may form a 'hydrophobic cap' which closes around the oleic acid upon binding. Thus, understanding the structural domains of the SCP-x/pro-SCP-2 gene and its respective posttranslationally processed proteins has provided new insights into their functions in intracellular targeting and metabolism of lipids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号