首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过对图G边集分折的方法,对图的符号边全k控制问题进行了研究,得到了连通图G的符号边全k控制γskt(G)的2个下限,并确定了所有路符号边全k控制数.  相似文献   

2.
徐保根  陈悦  孔祥阳 《江西科学》2010,28(6):722-723,726
设G=(V,E)是一个图,一个函数f:E→{-1,+1}如果∑e′∈N(e)f(e′)≤0对于至少k条边e∈E成立,则称f为图G的一个反符号边全k控制函数。一个图G的反符号边全k控制数定义为γkst(G)=max{∑e∈Ef(e)|f为图G的反符边全k控制函数}。本文主要给出了连通图G的反符号边全k控制数γkst(G)的若干上限。  相似文献   

3.
本文在文[1]的基础上对正则图的符号边控制数做了进一步研究,并给出了任意n阶k-1-边连通k_正则图的符号边控制数的上下界。  相似文献   

4.
徐保根  汤友亮  罗茜 《江西科学》2011,29(5):546-549
设G=(V,E)是一个非空图,对于一个函数f∶V(G)∪E(G)→{-1,1},则称f的权重为w(f)=∑x∈V(G)∪E(G)f(x)。若x∈V(G)∪E(G),定义f[x]=∑y∈NT[x]f(y)。如果对所有的x∈V(G)∪E(G)都有f[x]≤1,则称f是图G的一个反全符号控制函数。G的反全符号控制数定义为γ*...  相似文献   

5.
关于图的符号边控制数的下界   总被引:1,自引:1,他引:1  
利用图的控制理论引入新的参数mo来讨论符号边控制数的界限问题,得到图的符号边控制数关于边数m、最大边度Δe和最小边度δe以及参数mo的一些新的下界.  相似文献   

6.
设G为给定的图,且δ(G)≥1,用G ′表示图G的每个顶点v上增加d(v)-1个悬挂边所得到的图。徐保根给出了图G ′的符号边控制数。本文对上述结果做了详细证明,并给出四个例子。  相似文献   

7.
关于正则图的符号边控制数   总被引:2,自引:1,他引:2  
本文讨论了正则图的符号边控制数并确定了一般正则图的符号边控制数的上、下界,进而给出了达到下界的必要条件同时构造出达到下界的特殊图.  相似文献   

8.
对于任意正整数m和n,用I(Cm)表示在长为m圈Cm的每个顶点处增添1条悬挂边而得到的图,I(d(v)-1)(Kn)表示在完全图Kn的每个顶点v处增添(d(v)-1)条悬挂边而得到的图.本文确定了I(Cm)的符号边控制数为0,I(d(v)-1)(Kn)的符号边控制数为1/2(3n-n2).  相似文献   

9.
通过对图G的边集分析的方法,对图的符号星k控制数进行研究,确定了几类图的符号星k控制数  相似文献   

10.
针对“关于图的符号星控制数”一文中有一个定理(关于完全图的符号星控制数)的部分结果是不正确的,文章给出正确的结论及其证明,并确定了k-正则二部图的符号星控制数。  相似文献   

11.
设γ’st(G)表示图G的符号边全控制数,给出了一般图G和超立方体的符号边全控制数的一个下界和一个上界,计算了等完全二部图的符号边全控制数的精确值。  相似文献   

12.
对于任意的n阶图G, 当存在一个最大的奇元素子图是图G的导出子图, 给出了图G的符号边控制数的一个下界. 此外, 还改进了任意非平凡的n阶树T的符号边控制数的下界.  相似文献   

13.
完全图的全符号控制数   总被引:2,自引:0,他引:2  
设G是n个顶点的完全图,得到了完全图的全符号控制数。  相似文献   

14.
设G是n个顶点的完全图,得到了完全图的全符号控制数。  相似文献   

15.
本文对几类特殊图的强符号控制函数及强符号控制数进行了研究,给出了完全图、完全二部图、路及圈的强符号控制数。  相似文献   

16.
不含孤立点的图G称为全控制边临界的,如果对任意两个不相邻顶点u和v, 有γt(G uv)<γt(G).也称这样的图为γt-临界的. 如果该图G的全控制数为k,称G为k-γt-临界的.一个γt-临界图G称为强γt-临界的, 如果对任意顶点v∈V(G)存在G的一个基数为γt(G)-1的控制集D使得G[D]除v外不含孤立点.研究了强γt-临界图的性质,给出了一个由小的强γt-临界图构造大强γt-临界图的方法.  相似文献   

17.
本文对图的弱符号控制函数和弱符号控制数的性质进行了研究,在此基础上,得出图的弱符号控制数的若干性质。  相似文献   

18.
几类图的强符号控制数   总被引:1,自引:0,他引:1  
本文对几类特殊图的强符号控制函数及强符号控制数进行了研究,给出了完全图、完全二部图、路及圈的强符号控制数.  相似文献   

19.
设G=(V,E)是一个没有孤立顶点的图,如果一个函数f:E→{-1,1},满足f(E(v))≥1,v∈V(G),则称f为图G的一个符号星控制函数.图G的符号星控制数定义为:γss(G)=min{f(E)|f为G的反符号星控制函数},论文确定了pq(2pq,且p、q为互异的素数)阶群Q上Cayley图X(Q,M)的符号星控制数γss(X(Q,M))=(p-1)q+1,M表示群Q的极小生成集.  相似文献   

20.
设G=(V,E)是一个没有孤立顶点的图,如果一个函数f:E→{+1,-1},对一切v∈V(G)满足∑e∈E(v)f(e)≥1成立,则称f为图G的一个符号星控制函数。图G的符号星控制数定义为γ’ss(G)=min{∑e∈E(v)f(e)∣f为G的符号星控制函数}。在图的符号星控制概念的基础上,确定了两类特殊图的符号星控制数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号