首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Louzidian normal fault occurs as the eastern detachment fault of the Kalaqin metamorphic core complex. Field observations and microstructural analyses reveal that the Louzidian-Dachengzi ductile shear zone developed in its lower-plate was genetically related to sinistral strike-slips and extensional faulting. Two samples from this ductile shear zone yield 40Ar-39Ar plateau ages of 133 Ma (Bi) and 126 Ma (Kp), which are concordant with their isochron ages. The plateau age of 133 Ma (Bi) records the formation age of the ductile shear zone. The inconsistent relationship between the earlier strike-slip ductile shear zone and the later normal fault makes the Kalaqin Quasi-metamorphic core complex distinctive from Cordilleran metamorphic core complex. These ages provide important geochronological data for putting constraints on the formation age and genesis of such ductile shear zones.  相似文献   

2.
The Yunmengshan metamorphic core complex in the middle part of the Yanshan Fold and Thrust Belt records crust extension processes of the eastern North China Craton during its peak destruction.Development of the metamorphic core complex was controlled by the generally NNE-striking Dashuiyu Shear Zone.The shear zone dips SE and becomes shallower NE-wards,leading to exposures of a ductile shear zone in the southern and middle parts and brittle faults in the northern part.Exposure structures,microstructures,and quartz C-axis fabrics indicate that the ductile shear zone belongs to an extensional shear zone with a top-to-the-SE shear sense.Deformation temperatures of 300–520°C suggest a midcrustal origin for the ductile shear zone.A ductile deformation belt in the footwall of the shear zone is only as wide as 1–3 km,indicating no widespread mid-crustal ductile flow in the region during the deformation.Zircon U–Pb dating of dykes and plutons as well as hornblende and biotite40Ar/39Ar dating demonstrate that the metamorphic core complex originated at 135 Ma and experienced intense shearing of the Dashuiyu Shear Zone,development of the supradetachment basins,and synkinematic intrusion during 135–125 Ma.The metamorphic core complex was subjected to rapid exhumation during 125–114 Ma when the Dashuiyu Shear Zone suffered continuous activity and passive doming.The shear zone and its hanging wall were cut or replaced by a series of brittle faults when they wereuplifted to a brittle regime,showing that exhumation took place in continuous extensional activities.The metamorphic core complex turned into slow exhumation in an extensional regime in the following latest Early Cretaceous.The evolution history suggests that the Yunmengshan metamorphic core complex was developed by the rolling-hinge model,a common formation mechanism for intraplate metamorphic core complexes in the North China Craton,under the continuous NW–SE extension during the Early Cretaceous(135–100 Ma).  相似文献   

3.
The samples of Caledonian mylonitized granite and Jurassic meta-sedimentary rocks were collected in the north of Dangjinshan Pass, Qaidam gate fault-valley and Gesi fault-valley. Detailed studies under the microscope and electronic microscope suggest that all the samples contain the syntectonic-growing minerals such as white mica, chlorite, sericite, biotite, etc. By dating these minerals, we got a group of 40Ar/39Ar laser probe isochronal ages of 89—92 Ma and apparent ages of (46.6±6.4) Ma. The ages ranging from 97 to 46 Ma were reported for the first time in the isotopic dating researches of the Altyn Fault. The isochronal age group of (98—89) Ma indicates that a ductile strike-slip event, with low-grade metamorphism, began in late Cretaceous. This suggests that the strike-slip movement of the Altyn Fault should be related to the formation of the so-called west tectonic syntaxis in the Nepal-western Kunlun area.  相似文献   

4.
This note reports the SHRIMP U-Pb data of zircons from the Caledonian Xiongdian eclogite, western Dabie Mountains. Zircons from the rock occur mainly in garnet and other metamorphic minerals with sharp boundaries and exhibit textures growing under metamorphic conditions. Analyses of 7 grains give 206Pb/238U ages ranging from 335 to 424 Ma, showing a certain degree of radiogenic lead loss. This suggests a minimum age of (424±5) Ma for the metamorphic zircons, as well as the high-pressure metamorphic event. The outer peripheral zone of a zircon gives 206Pb/238U age of about 300 Ma. Combined with Sm-Nd, 40Ar-39Ar, U-Pb and 207Pb/206Pb ages, the peak metamorphism of the Xiongdian eclogite is documented between 424—480 Ma.  相似文献   

5.
The40Ar/39Ar ages indicate that the eclogite facies rocks of the Hasiate slice in the western Tianshan Mountains were formed at the early stage of Devonian (401 Ma) and had been uplifted to the greenschist facies tectonic level in the middle stage of Devonian (381 Ma). The formation and uplift of the blueschists of the Akesayi slice are constrained to the late stage of Devonian (370-364 Ma). The different tectonic slices in the high-pressure metamorphic belt have experienced the different uplift history.  相似文献   

6.
Two phases of sinistral strike-slip ductile shear belts occur on the eastern margin of the Dabie orogenic belt. A muscovite ~(40)Ar/~(39)Ar plateau age of 128 Ma was obtained from mylonite in the later ductile shear zone. Three muscovite samples separated from mylonites of 3 localities in the earlier ductile shear belts yield ~(40)Ar/~(39)Ar plateau ages of 192.5±0.7 Ma, 189.7±0.6 Ma and 188.7±0.7 Ma, respectively. They are interpreted as cooling ages of the earlier sinistral strike-slip deformation. It is suggested that left-lateral displacement of the Tan-Lu fault zone started in a late stage of the collision orogeny in the Dabie-Sulu orogenic belt between the North and South China plates. Therefore, the earlier Tan-Lu fault zone was syn-orogenic strike-slip tectonics. The fault zone was used again for sinistral displacement during tectonic activities of peri-Pacific regime in Early Cretaceous. It is proposed that the fault zone occurred as a transform fault during the orogenic process.  相似文献   

7.
Using laser 40Ar/39Ar dating method, we have gotten the metamorphic ages of lawsonite blueschist and epidote blueschist from Jiuquan, northern Qilian Mountain, NW China. The high quality laser 40Ar/39Ar dating of glaucophane from lawsonite blueschist gives an isochron age of 413±5 Ma. The isochron age obtained from phengite in epidote blueschist is 415±7 Ma. These data, combining with peak metamorphic P-T conditions and regional geological setting, allow us to infer that the lower limit of the ages of the prograde subduction metamorphism from lawsonite blueschist facies to epidote blueschist facies occurred at ca. 413–415 Ma, which also suggests that the formation of lawsonite blueschist in the northern Qilian Mountain maybe resulted from the corner flow in the cold subduction zone. This study shows that the final closing time of the northern Qilian remnant oceanic basin is about 413–415 Ma, which also represents the convergent age between the North China Craton and the Qaidam block.  相似文献   

8.
Eclogites have been found in the margin of the Qinghai-Tibet Plateau respectively since the 1990s. First Eocene eclogite from Himalayan belt was discov- ered in Kaghan valley, northern Pakistan in 1991, in which coesite was identified[1,2]. Then two eclog…  相似文献   

9.
High-pressure (HP) metamorphic terrane in the Tongbai orogen comprises two HP slices (I and II) and a tectonic m61ange zone in the northeast and a blueschist-greenschist zone in the southwest. HP slice I is represented by the northern and southern eclogite zones on the two sides of the Tongbaishan antiform. HP slice II is represented by retrograded eclogite-bearing metamorphic en- claves in Cretaceous gneissic granites in the Tongbai Complex. U-Pb, Lu-Hf, Rb-Sr and 4Ar/39Ar multichronometric data indi- cate that the peak metamorphism of HP slice I took place at -255 Ma, whereas the metamorphic ages of HP slice II are as young as 232-220 Ma. By contrast, the tectonic melange zone near the suture was metamorphosed at -256 Ma. Such a diachroneity of dif- ferent slices across the direction of the orogen in the Hong'an-Dabie-Sulu HP/UHP terrane is ubiquitous, and it can be interpreted by a syn-subduction detachment/exhumation model. Furthermore, the metamorphic age of HP slice I in the Tongbai orogen is older than that of the equivalent HP slice in the Hong'an orogen by ~15 Ma, suggesting that the diachroneity may have also ex- isted along the direction of the orogen. A seesaw-type subduction/exhumation model is proposed to explain this age disparity and the subduction of the South China Block becomimg shallower towards the west.  相似文献   

10.
The Louzidian normal fault occurs as the eastern detachment fault of the Kalaqin metamorphic core complex. Field observations and microstructural analyses reveal that the Louzidian-Dachengzi ductile shear zone developed in its lower-plate was genetically related to sinistral strike-slips and extensional faulting. Two samples from this ductile shear zone yield 40Ar-39Ar plateau ages of 133 Ma (Bi) and 126 Ma (Kp), which are concordant with their isochron ages. The plateau age of 133 Ma (Bi) records the formation age of the ductile shear zone. The inconsistent relationship between the earlier strike-slip ductile shear zone and the later normal fault makes the Kalaqin Quasi-metamorphic core complex distinctive from Cordilleran metamorphic core complex. These ages provide important geochronological data for putting constraints on the formation age and genesis of such ductile shear zones.  相似文献   

11.
Two ductile shear zones trending EW and NNE respectively not only controlled the tectonic framework of the northern North China, but also constrained the geodynamic background for gold mineralization in this region. Field observations and microstructural analyses reveal that the EW trending ductile shear zones are mainly contributed to dextral compressional deformation resulting from top-to-the-southeast oblique thrust shearing, whereas the NNE trending ones are genetically related to sinistral strike-slip and extensional faulting. One sample from the former yielded an 40Ar–39Ar plateau age of (219± 4) Ma (Bi) and two samples from the latter gave 40Ar–39Ar plateau ages of (116± 2) Ma (Bi) and (127±3) Ma (Bi). These ages provide constraints on the top-to-the-southeast oblique thrusting event occurring in Late Triassic and the sinistral extensional and strike-slip faulting event which occurred in Early Cretaceous.  相似文献   

12.
In Dulan County, Qinghai Province NW China, the arc volcanic sequences in the northern side of the Central Fault of the East Kunlun were metamorphosed progressively from upper greenschist facies in the south to epidote-amphibolite facies in the north. High-angle thrust deformation was developed synchronously with the peak metamor-phim and superimposed with later low-angle striking-slip deformation. Zircon U-Pb dating yields a concordant age of(448 ± 4) Ma for the metavolcanics. Syn-kinematic horn-blende and muscovite separated from the high-angle thrusting belt give 40Ar-39Ar plateau age of (427 ± 4) Ma and 408 Ma, respectively. These results precisely constrain the timing of the closure of early Paleozoic volcanic basin (Proto-Tethys) over the eastern portion of the East Kunlun Orogen, and the thrust tectonic slice had a cool rate of ca. 9℃/Ma. Keywords: East Kunlun Mountains, metamorphic and deformation event, geochronology.  相似文献   

13.
The petrology and mineral assemblages of blueschists in the Gangmar, central Qiangtang, northern Tibet were examined, which indicates that the metamorphic condition is high-pressure low-temperature. In this note, we reported the 40Ar/39Ar dating results of glaucophane from two blueschist samples. Their apparent ages are (275.0± 1.3) Ma and (287.6± 2.3) Ma and similar isochron ages are (275.0± 0.9) Ma and (282.4± 0.8) Ma, respectively. These isotopic datings show the high-pressure metamorphism occurring in Lower Permian. The ages also coincide with the evolution of Palaeo-Tethys ocean in Late Palaeozoic.  相似文献   

14.
排山楼金矿床40Ar-39Ar年龄及其地质意义   总被引:1,自引:0,他引:1  
采用Ar-Ar同位素测年法对辽宁排山楼金矿床矿化阶段形成的钾长石和似斑状花岗岩中的钾长石进行了测试,获得矿化阶段形成钾长石40Ar-39Ar坪年龄为(116.69±1.15)Ma,等时线年龄为(116.97±1.39)Ma,以及似斑状花岗岩中原生钾长石40Ar-39Ar坪年龄为(126.71±2.03)Ma,等时线年龄为(124.00±4.32)Ma的数据.前者代表了该矿床的形成年龄,即该矿床形成于早白垩世,后者表明金矿化不早于(126.71±2.03)Ma.这一成矿年龄与华北陆块北缘大部分金矿床的成矿年龄一致,表明华北陆块北缘绝大多数金矿床形成于中国东部中生代动力学体制发生转折的时期.  相似文献   

15.
对西昆仑造山带山前叶城地区柯克亚剖面新生代砂岩样品中重矿物及碎屑金红石的微量元素进行分析, 结果表明重矿物含量及其组合特征具有明显分段性, 上新世阿图什组(N2a)底部以下为较稳定重矿物阶段, 以上为不稳定重矿物阶段, 反映西昆仑在上新世经历过一期快速隆升过程。碎屑金红石微量元素特征表明, 剖面从下至上, 源岩为泥质变质岩的比例逐渐降低, 基性变质岩的比例逐渐增高, 反映西昆仑快速隆升导致基底被抬升剥蚀, 基底岩石对物源的贡献增大。金红石母岩类型主要为角闪岩/榴辉岩相和麻粒岩相变质岩, 可能由于西昆仑西部快速隆升, 形成西高东低的地貌格局, 西昆仑西部成为该区的优势物源区。  相似文献   

16.
Cenxi Permian basalts are the late Palaeozoic island-arc type basalts first found in South China. REE and trace element characteristics and distribution patterns show that this volcanic formation, which has been isotopically dated at 261 MaB. P. by the39Ar/40Ar method, is of an active continental marginal island arc type, and that the tectonic environment at that time was an island-arc marginal sea or minor ocean basin related with the paleo-Tethyan tectonic belt in western Guangdongeastern Guangxi.  相似文献   

17.
新疆北山裂谷带西缘若羌县赤石山地区存在大型变质核杂岩构造。其下拆离盘为古元古界结晶基底杂岩 ,上拆离盘为中元古界白湖群变质岩系 ,滑脱拆离带为已变形的大型韧性正断层。核杂岩南、北侧发育上叠盆地 ,北侧形成“年轻”正断层及同构造期岩浆岩。变质核杂岩的形成与晚古生代北山陆内裂谷区域伸展有直接联系。该区变质核杂岩的首次厘定 ,对深化北山裂谷的研究具有重要意义  相似文献   

18.
We performed a combined study of He–Ar isotopes and element geochemistry for pyroxene megacrysts and mantle xenoliths from Cenozoic basalt in the Changle–Linqu area in western Shandong.The results are used to trace the evolution of subcontinental lithospheric mantle after destruction of the North China Craton.The3He/4He ratios of pyroxene megacrysts,websterite,and dunites are 7.0–7.7 Ra,7.4 Ra,and 7.0–7.7 Ra,respectively.They are related to the origin of host basalts,and are slightly lower than that of mid-ocean ridge basalts(MORB).Their40Ar/36Ar ratios are much lower than that of MORB and close to that of air.The lherzolites and wehrlites represent the fragments of the newly accreted lithospheric mantle,and their REE and trace elements indicate that they experienced melt metasomatism and partial melting.The3He/4He ratios of their olivine are slightly lower than that of MORB,but3He/4He ratios of their clinopyroxene are low(2.3–7.1 Ra)and display an inverse correlation with(La/Yb)N.The40Ar/36Ar ratios of these clinopyroxene are much lower than that of MORB and close to the air ratio.Combining existing studies of petrology,Sr–Nd–Pb isotopes,O isotopes,trace elements,and Mg isotopes,we infer that the juvenile lithospheric mantle in the Changle–Linqu area was metasomatized by oceanic crust-derived melts,which transfer the supracrustal Ar isotope signatures to the mantle sources.The low4He abundance and low3He/4He ratios of clinopyroxene in the lherzolites and wehrlites are ascribed to metasomatism by crustal melts from the subducted Pacific plate.  相似文献   

19.
Different types of UHP metamorphic rocks havebeen recently discovered in the Altyn Tagh[1—4], the north-ern margin of Qadam Basin[5—7], the southwestern Tian-shan Mountains[8,9] and the northern Qinling Moun-tains[10,11] in Central and Western China. And these areashave attracted focus attention of geologists at home andabroad to the studying of UHP metamorphism and conti-nental deep subduction. However, as newly discoveredUHP metamorphic terranes, some questions have beenarisen abou…  相似文献   

20.
Ultra-Violet Laser Ablation Microprobe (UVLAMP) extraction technique enables the direct investigation of Ar-Ar age prorde in crystals, and yields more information on rates and durations of geological process than conventional single time snapshots. Phlogopite flakes from lamprophyre at Pishan dyke in western Kunlun were dated by using an UV laser (λ= 213 nm) microprobe with spot analyses. The results show good agreement with those from the conventional ^40Ar/^39Ar step heating experiments. This indicates that the Ar isotopes are distributed homogenously in the phlogopite and the UVLAMP can be a powerful tool in the study of thermal history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号