首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
N油田M油组岩性复杂,岩石类型众多,其储层普遍含碳酸钙组分和泥质,运用常规方法识别岩性结果难以满足实际生产需要。针对这一问题,提出基于主成分分析法的岩性识别方法。首先对岩性进行归类,研究不同岩石类型的测井响应特征,优选对岩性变化反映敏感的声波时差、补偿中子等曲线,然后利用主成分分析法确定岩性,识别主成分并制作识别图版。运用该图版对研究区进行岩性识别,识别符合率达到87.5%,证明该方法的应用效果较好。  相似文献   

2.
应用主成分分析(principal component analysis,PCA)法对从90#和93#两种汽油的50个实验样所取的特征数据进行降维处理,再结合Fisher判别方法对这两种汽油进行分类,并将分类结果与不采用PCA法而直接计算数据所得出的Fisher判别结果进行比较,前者的分类正确率达到100%,而后者却只有50%.结果说明采用PCA方法事先对数据处理可以大大的提高汽油分类的准确性.  相似文献   

3.
针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行融合,利用池化层的特征,将融合后的特征送入全连接层,对其特征进行融合处理来增加网络的非线性表达,使网络学习到的特征更加丰富;最后,输出层经过Softmax分类器对表情进行分类,在公开数据集FER2013和CK+上进行实验,并且对实验结果进行分析。实验结果表明:改进后的网络结构在FER2013和CK+数据集的面部表情上,识别率分别提高了0.06%和2.25%。所提方法在人脸表情识别中对卷积神经网络设置和参数配置方面具有参考价值。  相似文献   

4.
从区域经济、人口、基础设施和生活方式等4个方面入手,构建城市化水平评价指标体系。由于传统的主成分分析法未考虑原始评价指标对评价问题的重要性上的差异,因此运用改进的主成分分析法对全国31个地区及城市城市化水平分析并排名。由改进的主成分分析法计算得到的结果看我国31个地区城市化水平有较大的差异,沿海地区、珠江三角洲地区和长江流域地区发展水平较好,西北部地区城市化进程则相对较慢,阐述了具体地区的客观经济及人文环境造成此种差异的原因,并对未来城市化发展方向讨论了一些改进思路。  相似文献   

5.
基于人脸局部特征和SVM的表情识别   总被引:1,自引:0,他引:1  
提出了一种基于人脸局部特征的表情识别方法.首先选取人脸重要的局部特征,对得到的局部特征进行主成分分析,然后用支持向量机(SVM)设计局部特征分类器来确定测试表情图像中局部特征,同时设计支持向量机(SVM)表情分类器,确定表情图像的所属类别.对JAFFE人脸图像数据库进行仿真实验.结果表明,该方法要优于一般的基于整体特征的人脸表情识别方法.  相似文献   

6.
一种基于Fisher准则的二维主元分析表情识别方法   总被引:1,自引:0,他引:1  
提出了一种基于Fisher准则进行特征选择的二维主元分析表情识别方法.首先对训练样本做二维主元分析,然后再根据Fisher准则,按Fisher比的大小选择特征向量作为投影轴,最后用最近邻方法进行分类.在JAFFE人脸表情静态图像库上进行实验,与按特征值的大小来选择特征向量相比,该方法更有效.  相似文献   

7.
企业项目因投资大和工期长等特点,使得自身存在着许多不确定因素,这就决定了它的多风险性。如何从众多风险中识别各种不同风险的重要程度和影响力,对项目的顺利实施至关重要。利用主成分分析法对某通讯企业2013年10月20日至2014年1月31日期间的6个项目进行分析与评价,最终得到各项目活动的质量和排名情况,为企业决策提供了科学的依据,对量化管理奠定了基础。  相似文献   

8.
根据事故统计数据建立事故预测模型,对分析现有交通环境下事故影响因素并采取相应的措施进行防治具有重要的意义。本文采集多条公路四路信号交叉口事故数据,运用主成分分析法进行事故影响因素相关分析,建立事故预测模型,经检验预测模型具有较高的精度。  相似文献   

9.
针对目前人脸表情识别存在准确率不高、模型复杂和计算量大的问题,文章提出了一种基于八度卷积改进的人脸表情识别模型(OCNN):使用改进的八度卷积进行特征提取,提高对细节特征的提取效果,降低特征图的冗余,在不增加参数的同时减少运算量,以提高特征提取性能;利用DyReLU激活函数来增强模型的学习和表达能力;使用自适应平均池化下采样层代替全连接层,以减少参数;将模型在大规模数据集上进行预训练,并在FER2013、FERPlus、RAF-DB数据集上进行模型性能验证实验。实验结果表明:训练后的模型权重为10.4 MB,在人脸表情识别数据集FER2013、FERPlus和RAF-DB上的准确率分别达到73.53%、89.58%和88.50%;与目前诸模型相比,OCNN模型的准确性高且计算资源消耗低,充分证明了该模型的有效性。  相似文献   

10.
在采用特征融合方法进行人脸表情识别时,通常会产生高维特征问题.针对这一问题,提出一种基于两步降维和并行特征融合的表情识别新方法.利用主成分分析法(principal component analysis,PCA)分别对待融合的两类特征在实数域进行第一次降维,将降维后的特征进行并行特征融合;为了解决在并行融合过程中产生的高维复特征问题,提出一种基于酉空间的混合判别分析方法(unitary-space hybrid discriminant analysis,unitary-space HDA)作为酉空间的特征降维方法.该方法是实数域混合判别分析法在酉空间内的扩展,并兼顾了复特征数据的类间判别信息及全局描述信息.对局部二值模式(local binary pattern,LBP)和Gabor小波特征进行融合,并在JAFFE和CK+表情数据集上开展对比实验.实验结果表明,该方法具有较好的高维复特征数据降维能力,并且有效提高了表情识别率.  相似文献   

11.
阐述虹膜作为生物测定学特征用于身份识别具有得天独厚的优势,虹膜识别在场所或资源的安全控制等方面具有重要的应用价值.提出一种新的虹膜识别方法,该方法利用核主成分分析(KPCA)提取虹膜的纹理特征,通过竞争学习寻找其中最优的KPCA特征,形成虹膜编码,最后通过计算编码之间的方差倒数加权欧氏距离对虹膜进行识别.实验结果表明,该方法计算速度快,提取特征的效果好,对环境的适应性强,可用于实际的身份鉴别系统.  相似文献   

12.
目标的雷达散射截面(RCS)包含了丰富的目标类别信息,如何有效利用目标RCS特征对空间目标的雷达识别具有重要意义.文中提取中心矩作为特征向量,采用主分量分析(PCA)进一步进行特征压缩,利用支撑矢量机(SVM)分类算法来实现识别.基于实测数据的仿真实验结果表明,该方法具有较好的识别性能和推广能力.  相似文献   

13.
基于核函数主元分析的机械设备状态识别   总被引:4,自引:0,他引:4  
研究了核函数主元分析在机械故障模式分类中的应用,通过计算原始空间的内积核函数实现原始数据空间到高维数据空间的非线性映射,再对高维数据作主元分析,求取更易于分类的核函数主元,实验表明,核函数主元分析更适于提取故障信号的非线性特征,能有效区分不同的故障模式,可以应用于机械设备的状态识别。  相似文献   

14.
为了提高人脸图像的识别率、识别效率和鲁棒性,提出一种基于主成分分析(Principal Component Analysis, PCA)和支持向量机(support Vector machine,SVM)的鲁棒稀疏线性判别分析方法,通过ORL和YaleB人脸库、COIL20物体库和UCI机器学习库中部分数据集,将本文方法与线性判别分析、鲁棒线性判别分析、基于 范数和巴氏距离的鲁棒线性判别分析、鲁棒自适应线性判别分析和鲁棒稀疏线性判别分析等六种方法进行比较。实验结果表明,在ORL人脸库、COIL20物体库和UCI机器学习库的部分数据集中,在原始图像条件下,本文方法的识别率均值依次为92.80%,97.76%和89.61%,均高于其它5种方法。在YaleB人脸库加入椒盐噪声的条件下,本文方法的识别率均值为81.35%,比其它五种方法高1.37%以上。  相似文献   

15.
基于主成分分析和Softmax回归模型的人脸识别方法   总被引:1,自引:0,他引:1  
文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网络,将它与Softmax回归模型构成的级联结构看作是2层神经网络,在神经网络的训练过程中,主成分的特征向量可以微调。在不同人脸数据库上的实验表明,相比于传统的只用PCA降维的方法,本文方法可达到较高的识别率。  相似文献   

16.
利用小波变换提高基于KPCA方法的人脸识别性能   总被引:3,自引:0,他引:3  
基于核主成分分析(KPCA)的人脸识别算法能够提取非线性图像特征,在小样本训练条件下有较好性能. 然而并非所有非线性特征对识别都有利,过多的不相关特征可能会降低识别性能. 针对图像信息冗余的特点,预先对图像进行小波变换,通过消除对识别无关的细节信息,不仅提高了KPCA方法的识别精度,而且降低了该算法对计算机硬件的要求. 同时,为了抑制KPCA对光照等变化的较高敏感性,还提出一种对图像灰度进行衰减的预处理策略. 基于ORL数据库的实验表明,综合上述措施的系统比传统方法具有更快的训练速度和更高的识别精度.  相似文献   

17.
基于核主元分析法和支持向量机的人耳识别   总被引:9,自引:0,他引:9  
对人耳识别中若干关键问题进行了研究. 介绍了两种人耳图像归一化处理的方法,即基于外耳轮廓长轴的线标记法和基于外耳轮廓起始点的点标记法,并对这两种方法进行了对比. 在分析现有人耳识别方法不足的基础上,提出利用核主元分析法提取人耳图像的代数特征,再利用支持向量机分类模型进行人耳识别. 在带有角度、光照变化的北京科技大学人耳图像库上得到的识别率为98.7%,表明了该识别方法的有效性以及利用人耳图像进行身份识别的可行性.  相似文献   

18.
针对LDP利用Kirsch算子计算8方向的边缘响应值并排序,特征提取速度慢的问题,提出了一种改进的分解局部方向模式DLDP(divided local directional pattern)特征提取方法。将Kirsch算子的8个方向掩模分成2个子方向掩模再分别计算边缘响应值,获得2个编码(DLDP1和DLDP2),级联两个编码的直方图得到表情特征DLDP。然后利用主成分分析法(PCA,principal component analysis)降维处理。最后用支持向量机进行表情识别,在JAFFE数据库上的实验表明,本文方法与近几年效果较好的特征提取算法相比,不仅缩短了特征提取的运算时间,而且提高了识别率。  相似文献   

19.
为了改进基于震动信号的地面运动目标识别算法,提出了一种基于主成分分析(PCA)的2次特征提取算法.首先对地面运动目标引起的震动信号进行目标特性分析,提取多维的特征值;然后利用主成分分析方法对众多的特征值进行分析,去除特征值之间的相关性,提取综合特征值并应用于分类器,得到目标识别结果.基于实地采集的地面运动目标的震动信号进行实验,结果表明:该方法有效地减少了特征值的维数和相关性,降低了分类器训练的难度和训练时间,同时提高了目标的正确识别率.  相似文献   

20.
进行河流洪水聚类的目的是根据洪水特征的相似程度划分洪水类别,研究同类洪水的规律性以及应对措施.但是,洪水特征选择过多往往会增加计算的复杂程度,同时特征之间的相关性也使得信息大量重叠,导致计算结果失真.为此,提出基于主成分分析的河流洪水系统聚类法.该法首先将所选的洪水特征综合成少数几个不相关的主成分,然后计算出每场洪水在各主成分上的得分值并将该值作为新的洪水特征值,最后根据这些新特征值进行洪水聚类.三门峡水库入库洪水聚类实例证明了该方法的可行性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号