首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper proposes value‐at risk (VaR) estimation methods that are a synthesis of conditional autoregressive value at risk (CAViaR) time series models and implied volatility. The appeal of this proposal is that it merges information from the historical time series and the different information supplied by the market's expectation of risk. Forecast‐combining methods, with weights estimated using quantile regression, are considered. We also investigate plugging implied volatility into the CAViaR models—a procedure that has not been considered in the VaR area so far. Results for daily index returns indicate that the newly proposed methods are comparable or superior to individual methods, such as the standard CAViaR models and quantiles constructed from implied volatility and the empirical distribution of standardised residuals. We find that the implied volatility has more explanatory power as the focus moves further out into the left tail of the conditional distribution of S&P 500 daily returns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper provides clear‐cut evidence that the out‐of‐sample VaR (value‐at‐risk) forecasting performance of alternative parametric volatility models, like EGARCH (exponential general autoregressive conditional heteroskedasticity) or GARCH, and Markov regime‐switching models, can be considerably improved if they are combined with skewed distributions of asset return innovations. The performance of these models is found to be similar to that of the EVT (extreme value theory) approach. The performance of the latter approach can also be improved if asset return innovations are assumed to be skewed distributed. The performance of the Markov regime‐switching model is considerably improved if this model allows for EGARCH effects, for all different volatility regimes considered. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A risk management strategy designed to be robust to the global financial crisis (GFC), in the sense of selecting a value‐at‐risk (VaR) forecast that combines the forecasts of different VaR models, was proposed by McAleer and coworkers in 2010. The robust forecast is based on the median of the point VaR forecasts of a set of conditional volatility models. Such a risk management strategy is robust to the GFC in the sense that, while maintaining the same risk management strategy before, during and after a financial crisis, it will lead to comparatively low daily capital charges and violation penalties for the entire period. This paper presents evidence to support the claim that the median point forecast of VaR is generally GFC robust. We investigate the performance of a variety of single and combined VaR forecasts in terms of daily capital requirements and violation penalties under the Basel II Accord, as well as other criteria. In the empirical analysis we choose several major indexes, namely French CAC, German DAX, US Dow Jones, UK FTSE100, Hong Kong Hang Seng, Spanish Ibex 35, Japanese Nikkei, Swiss SMI and US S&P 500. The GARCH, EGARCH, GJR and RiskMetrics models as well as several other strategies, are used in the comparison. Backtesting is performed on each of these indexes using the Basel II Accord regulations for 2008–10 to examine the performance of the median strategy in terms of the number of violations and daily capital charges, among other criteria. The median is shown to be a profitable and safe strategy for risk management, both in calm and turbulent periods, as it provides a reasonable number of violations and daily capital charges. The median also performs well when both total losses and the asymmetric linear tick loss function are considered Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Value‐at‐risk (VaR) forecasting via a computational Bayesian framework is considered. A range of parametric models is compared, including standard, threshold nonlinear and Markov switching generalized autoregressive conditional heteroskedasticity (GARCH) specifications, plus standard and nonlinear stochastic volatility models, most considering four error probability distributions: Gaussian, Student‐t, skewed‐t and generalized error distribution. Adaptive Markov chain Monte Carlo methods are employed in estimation and forecasting. A portfolio of four Asia–Pacific stock markets is considered. Two forecasting periods are evaluated in light of the recent global financial crisis. Results reveal that: (i) GARCH models outperformed stochastic volatility models in almost all cases; (ii) asymmetric volatility models were clearly favoured pre crisis, while at the 1% level during and post crisis, for a 1‐day horizon, models with skewed‐t errors ranked best, while integrated GARCH models were favoured at the 5% level; (iii) all models forecast VaR less accurately and anti‐conservatively post crisis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Value‐at‐risk (VaR) forecasting generally relies on a parametric density function of portfolio returns that ignores higher moments or assumes them constant. In this paper, we propose a simple approach to forecasting of a portfolio VaR. We employ the Gram‐Charlier expansion (GCE) augmenting the standard normal distribution with the first four moments, which are allowed to vary over time. In an extensive empirical study, we compare the GCE approach to other models of VaR forecasting and conclude that it provides accurate and robust estimates of the realized VaR. In spite of its simplicity, on our dataset GCE outperforms other estimates that are generated by both constant and time‐varying higher‐moments models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper develops a method for modelling binary response data in a regression model with highly unbalanced class sizes. When the class sizes are highly unbalanced and the minority class represents a rare event, conventional regression analysis, i.e. logistic regression models, could underestimate the probability of the rare event. To overcome this drawback, we introduce a flexible skewed link function based on the quantile function of the generalized extreme value (GEV) distribution in a generalized additive model (GAM). The proposed model is known as generalized extreme value additive (GEVA) regression model, and a modified version of the local scoring algorithm is suggested to estimate it. We apply the proposed model to a dataset on Italian small and medium enterprises (SMEs) to estimate the default probability of SMEs. Our proposal performs better than the logistic (linear or additive) model in terms of predictive accuracy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we investigate the performance of a class of M‐estimators for both symmetric and asymmetric conditional heteroscedastic models in the prediction of value‐at‐risk. The class of estimators includes the least absolute deviation (LAD), Huber's, Cauchy and B‐estimator, as well as the well‐known quasi maximum likelihood estimator (QMLE). We use a wide range of summary statistics to compare both the in‐sample and out‐of‐sample VaR estimates of three well‐known stock indices. Our empirical study suggests that in general Cauchy, Huber and B‐estimator have better performance in predicting one‐step‐ahead VaR than the commonly used QMLE. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Accurate modelling of volatility (or risk) is important in finance, particularly as it relates to the modelling and forecasting of value‐at‐risk (VaR) thresholds. As financial applications typically deal with a portfolio of assets and risk, there are several multivariate GARCH models which specify the risk of one asset as depending on its own past as well as the past behaviour of other assets. Multivariate effects, whereby the risk of a given asset depends on the previous risk of any other asset, are termed spillover effects. In this paper we analyse the importance of considering spillover effects when forecasting financial volatility. The forecasting performance of the VARMA‐GARCH model of Ling and McAleer (2003), which includes spillover effects from all assets, the CCC model of Bollerslev (1990), which includes no spillovers, and a new Portfolio Spillover GARCH (PS‐GARCH) model, which accommodates aggregate spillovers parsimoniously and hence avoids the so‐called curse of dimensionality, are compared using a VaR example for a portfolio containing four international stock market indices. The empirical results suggest that spillover effects are statistically significant. However, the VaR threshold forecasts are generally found to be insensitive to the inclusion of spillover effects in any of the multivariate models considered. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
This article proposes intraday high‐frequency risk (HFR) measures for market risk in the case of irregularly spaced high‐frequency data. In this context, we distinguish three concepts of value‐at‐risk (VaR): the total VaR, the marginal (or per‐time‐unit) VaR and the instantaneous VaR. Since the market risk is obviously related to the duration between two consecutive trades, these measures are completed with a duration risk measure, i.e. the time‐at‐risk (TaR). We propose a forecasting procedure for VaR and TaR for each trade or other market microstructure event. Subsequently, we perform a backtesting procedure specifically designed to assess the validity of the VaR and TaR forecasts on irregularly spaced data. The performance of the HFR measure is illustrated in an empirical application for two stocks (Bank of America and Microsoft) and an exchange‐traded fund based on Standard & Poor's 500 index. We show that the intraday HFR forecasts capture accurately the volatility and duration dynamics for these three assets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
We study the effect of parameter and model uncertainty on the left‐tail of predictive densities and in particular on VaR forecasts. To this end, we evaluate the predictive performance of several GARCH‐type models estimated via Bayesian and maximum likelihood techniques. In addition to individual models, several combination methods are considered, such as Bayesian model averaging and (censored) optimal pooling for linear, log or beta linear pools. Daily returns for a set of stock market indexes are predicted over about 13 years from the early 2000s. We find that Bayesian predictive densities improve the VaR backtest at the 1% risk level for single models and for linear and log pools. We also find that the robust VaR backtest exhibited by linear and log pools is better than the backtest of single models at the 5% risk level. Finally, the equally weighted linear pool of Bayesian predictives tends to be the best VaR forecaster in a set of 42 forecasting techniques.  相似文献   

11.
Value‐at‐Risk (VaR) is widely used as a tool for measuring the market risk of asset portfolios. However, alternative VaR implementations are known to yield fairly different VaR forecasts. Hence, every use of VaR requires choosing among alternative forecasting models. This paper undertakes two case studies in model selection, for the S&P 500 index and India's NSE‐50 index, at the 95% and 99% levels. We employ a two‐stage model selection procedure. In the first stage we test a class of models for statistical accuracy. If multiple models survive rejection with the tests, we perform a second stage filtering of the surviving models using subjective loss functions. This two‐stage model selection procedure does prove to be useful in choosing a VaR model, while only incompletely addressing the problem. These case studies give us some evidence about the strengths and limitations of present knowledge on estimation and testing for VaR. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Value‐at‐risk (VaR) is a standard measure of market risk in financial markets. This paper proposes a novel, adaptive and efficient method to forecast both volatility and VaR. Extending existing exponential smoothing as well as GARCH formulations, the method is motivated from an asymmetric Laplace distribution, where skewness and heavy tails in return distributions, and their potentially time‐varying nature, are taken into account. The proposed volatility equation also involves novel time‐varying dynamics. Back‐testing results illustrate that the proposed method offers a viable, and more accurate, though conservative, improvement in forecasting VaR compared to a range of popular alternatives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
To guarantee stable quantile estimations even for noisy data, a novel loss function and novel quantile estimators are developed, by introducing the effective concept of orthogonal loss considering the noise in both response and explanatory variables. In particular, the pinball loss used in classical quantile estimators is improved into novel orthogonal pinball loss (OPL) by replacing vertical loss by orthogonal loss. Accordingly, linear quantile regression (QR) and support vector machine quantile regression (SVMQR) can be respectively extended into novel OPL‐based QR and OPL‐based SVMQR models. The empirical study on 10 publicly available datasets statistically verifies the superiority of the two OPL‐based models over their respective original forms in terms of prediction accuracy and quantile property, especially for extreme quantiles. Furthermore, the novel OPL‐based SVMQR model with both OPL and artificial intelligence (AI) outperforms all benchmark models, which can be used as a promising quantile estimator, especially for noisy data.  相似文献   

14.
Under the Basel II Accord, banks and other authorized deposit‐taking institutions (ADIs) have to communicate their daily risk estimates to the monetary authorities at the beginning of the trading day, using a variety of value‐at‐risk (VaR) models to measure risk. Sometimes the risk estimates communicated using these models are too high, thereby leading to large capital requirements and high capital costs. At other times, the risk estimates are too low, leading to excessive violations, so that realized losses are above the estimated risk. In this paper we analyze the profit‐maximizing problem of an ADI subject to capital requirements under the Basel II Accord as ADIs have to choose an optimal VaR reporting strategy that minimizes daily capital charges. Accordingly, we suggest a dynamic communication and forecasting strategy that responds to violations in a discrete and instantaneous manner, while adapting more slowly in periods of no violations. We apply the proposed strategy to Standard & Poor's 500 Index and show there can be substantial savings in daily capital charges, while restricting the number of violations to within the Basel II penalty limits. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Using quantile regression this paper explores the predictability of the stock and bond return distributions as a function of economic state variables. The use of quantile regression allows us to examine specific parts of the return distribution such as the tails and the center, and for a sufficiently fine grid of quantiles we can trace out the entire distribution. A univariate quantile regression model is used to examine the marginal stock and bond return distributions, while a multivariate model is used to capture their joint distribution. An empirical analysis on US data shows that economic state variables predict the stock and bond return distributions in quite different ways in terms of, for example, location shifts, volatility and skewness. Comparing the different economic state variables in terms of their out‐of‐sample forecasting performance, the empirical analysis also shows that the relative accuracy of the state variables varies across the return distribution. Density forecasts based on an assumed normal distribution with forecasted mean and variance is compared to forecasts based on quantile estimates and, in general, the latter yields the best performance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Testing the validity of value‐at‐risk (VaR) forecasts, or backtesting, is an integral part of modern market risk management and regulation. This is often done by applying independence and coverage tests developed by Christoffersen (International Economic Review, 1998; 39(4), 841–862) to so‐called hit‐sequences derived from VaR forecasts and realized losses. However, as pointed out in the literature, these aforementioned tests suffer from low rejection frequencies, or (empirical) power when applied to hit‐sequences derived from simulations matching empirical stylized characteristics of return data. One key observation of the studies is that higher‐order dependence in the hit‐sequences may cause the observed lower power performance. We propose to generalize the backtest framework for VaR forecasts, by extending the original first‐order dependence of Christoffersen to allow for a higher‐ or kth‐order dependence. We provide closed‐form expressions for the tests as well as asymptotic theory. Not only do the generalized tests have power against kth‐order dependence by definition, but also included simulations indicate improved power performance when replicating the aforementioned studies. Further, included simulations show much improved size properties of one of the suggested tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
The variance of a portfolio can be forecast using a single index model or the covariance matrix of the portfolio. Using univariate and multivariate conditional volatility models, this paper evaluates the performance of the single index and portfolio models in forecasting value‐at‐risk (VaR) thresholds of a portfolio. Likelihood ratio tests of unconditional coverage, independence and conditional coverage of the VaR forecasts suggest that the single‐index model leads to excessive and often serially dependent violations, while the portfolio model leads to too few violations. The single‐index model also leads to lower daily Basel Accord capital charges. The univariate models which display correct conditional coverage lead to higher capital charges than models which lead to too many violations. Overall, the Basel Accord penalties appear to be too lenient and favour models which have too many violations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Bayesian methods for assessing the accuracy of dynamic financial value‐at‐risk (VaR) forecasts have not been considered in the literature. Such methods are proposed in this paper. Specifically, Bayes factor analogues of popular frequentist tests for independence of violations from, and for correct coverage of a time series of, dynamic quantile forecasts are developed. To evaluate the relevant marginal likelihoods, analytic integration methods are utilized when possible; otherwise multivariate adaptive quadrature methods are employed to estimate the required quantities. The usual Bayesian interval estimate for a proportion is also examined in this context. The size and power properties of the proposed methods are examined via a simulation study, illustrating favourable comparisons both overall and with their frequentist counterparts. An empirical study employs the proposed methods, in comparison with standard tests, to assess the adequacy of a range of forecasting models for VaR in several financial market data series. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
We develop a novel quantile double autoregressive model for modelling financial time series. This is done by specifying a generalized lambda distribution to the quantile function of the location‐scale double autoregressive model developed by Ling (2004, 2007). Parameter estimation uses Markov chain Monte Carlo Bayesian methods. A simulation technique is introduced for forecasting the conditional distribution of financial returns m periods ahead, and hence any for predictive quantities of interest. The application to forecasting value‐at‐risk at different time horizons and coverage probabilities for Dow Jones Industrial Average shows that our method works very well in practice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper assesses the informational content of alternative realized volatility estimators, daily range and implied volatility in multi‐period out‐of‐sample Value‐at‐Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed Student's t distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi‐period VaR estimates. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures, which are immune against microstructure noise bias or price jumps, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号