首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
L Venolia  S M Gartler 《Nature》1983,302(5903):82-83
The mechanism of X-chromosome inactivation has been investigated recently using DNA-mediated transformation of the X-linked hypoxanthine phosphoribosyl transferase (hprt) locus. Several experiments indicate that inactive X-chromosomal DNA does not function in HPRT transformation. Liskay and Evans used DNA from hamster or mouse cells which had an hprt- allele on the active X chromosome and an hprt+ allele on the inactive X chromosome. We and others used rodent-human hybrid cell lines which had an hprt+ allele on the inactive human X chromosome alone. DNA from all of these cells failed to transform HPRT- recipients. Recently, Chapman et al. have shown that inactive X-chromosome DNA from several tissues of adult female mice is strikingly inefficient in genetic transformation for the hprt gene. On the other hand, de Jonge et al., using simian virus 40 (SV40)-transformed fibroblasts from a human heterozygous for an HPRT deficiency, observed HPRT transformation regardless of whether the hprt+ allele was on the active or the inactive X chromosome of the donor cells. We have done an experiment similar to that of deJonge et al., and report here results which clearly indicate that DNA from the inactive X chromosome functions very poorly in HPRT transformation, thus supporting the original interpretation of Liskay and Evans that inactive X-chromosomal DNA is structurally modified.  相似文献   

2.
Variation in regulation of steroid sulphatase locus in mammals   总被引:1,自引:0,他引:1  
M Crocker  I Craig 《Nature》1983,303(5919):721-722
Inactivation (lyonization) of one of the two copies of X-linked genes occurs in female mammals, thereby reducing the number of active copies to that of the male. It has been suggested that genes subject to lyonization would be expected to be preserved as a linkage group during mammalian evolution. A short region of the human X chromosome containing several genes, including that necessary for the expression of steroid sulphatase (STS), is exceptional in that it apparently escapes X-inactivation. As it is not apparent why the linkage of genes not subject to X-inactivation should be conserved, we have examined the expression of the STS gene in mice (it has been shown recently that this gene is X-linked). Enzyme levels were determined in normal males and females and in the progeny of crosses in which the sex reversing factor, Sxr, was segregating to produce XX males. We report here that in contrast to the situation in humans, the STS gene in mice is subject to the normal pattern of X-inactivation.  相似文献   

3.
The striking number of human and murine immunodeficiency disorders which map to the X chromosome suggests that genes localized on this chromosome must have important roles in lymphocyte development. At least seven distinct disorders in the human and two in the mouse disrupt lymphocyte maturation, particularly that of B cells, at characteristic stages. As functional genes mapping to the X chromosome in one mammal are found on the X chromosome in all other mammals, the same genes regulating lymphocyte development are expected to be found on the X chromosome in mouse and man. Investigations into the possible mechanisms of these X-linked disorders have been hampered by the lack of molecular probes for the genes or gene products affected; because of this, and the possibility of correlating one or more of the several hundred B- or T-cell-specific genes with a specific mutation, we surveyed 15 different B- and T-cell-specific cDNA clones for localization to the X chromosome. We report here the characterization of one of these murine cDNA clones, which hybridizes with a large, X-linked gene family, designated XLR (X-linked, lymphocyte-regulated). We show that the XLR gene family is closely linked to the X-linked immunodeficiency described in the CBA/N mouse strain (xid), by restriction fragment length polymorphism (RFLP) analysis of DNA from mice congeneic for xid. This finding, together with data on the expression of the XLR locus in B cells, indicates that this gene family either includes the locus defined by the xid mutation or is adjacent to it in a gene complex which may be important in lymphocyte differentiation.  相似文献   

4.
5.
X-chromosome inactivation in mammals is a regulatory phenomenon whereby one of the two X chromosomes in female cells is genetically inactivated, resulting in dosage compensation for X-linked genes between males and females. In both man and mouse, X-chromosome inactivation is thought to proceed from a single cis-acting switch region or inactivation centre (XIC/Xic). In the human, XIC has been mapped to band Xq13 (ref. 6) and in the mouse to band XD (ref. 7), and comparative mapping has shown that the XIC regions in the two species are syntenic. The recently described human XIST gene maps to the XIC region and seems to be expressed only from the inactive X chromosome. We report here that the mouse Xist gene maps to the Xic region of the mouse X chromosome and, using an interspecific Mus spretus/Mus musculus domesticus F1 hybrid mouse carrying the T(X;16)16H translocation, show that Xist is exclusively expressed from the inactive X chromosome. Conservation between man and mouse of chromosomal position and unique expression exclusively from the inactive X chromosome lends support to the hypothesis that XIST and its mouse homologue are involved in X-chromosome inactivation.  相似文献   

6.
7.
G F Kay  A Ashworth  G D Penny  M Dunlop  S Swift  N Brockdorff  S Rastan 《Nature》1991,354(6353):486-489
The human X-linked gene A1S9 complements a temperature-sensitive cell-cycle mutation in mouse L cells, and encodes the ubiquitin-activating enzyme E1. The gene has been reported to escape X-chromosome inactivation, but there is some conflicting evidence. We have isolated part of the mouse A1s9 gene, mapped it to the proximal portion of the X chromosome and shown that it undergoes normal X-inactivation. We also detected two copies of the gene on the short arm of the mouse Y chromosome (A1s9Y-1 and A1s9Y-2). The functional A1s9Y gene (A1s9Y-1) is expressed in testis and is lost in the deletion mutant Sxrb. Therefore A1s9Y-1 is a candidate for the spermatogenesis gene, Spy, which maps to this region. A1s9X is similar to the Zfx gene in undergoing X-inactivation, yet having homologous sequences on the short arm of the Y chromosome, which are expressed in the testis. These Y-linked genes may form part of a coregulated group of genes which function during spermatogenesis.  相似文献   

8.
The porcine SERPINA7 gene is considered as a positional candidate gene responsible for testis size for its location on X chromosome and its biologically critical role in the development of testis. A nonsynonymous polymorphism (His226Asn or C678A) in the ligand-binding domain of SERPINA7 has been identified, which alters SERPINA7’s affinity to thyroxine and is closely associated with testis size. In this study, a primer mutagenesis strategy was developed to genotype this polymorphism in Chinese indigenous pigs and some western commercial pigs. The C allele existed in all tested Chinese indigenous and wild pigs, while the A allele is specific for western commercial breeds, indicating the occurrence of the mutation is of western origin. The correlation of this polymorphism with different boar fertility traits was assessed using a White Duroc × Erhualian intercross which included 110 F2 mature boars. The results showed that the C678A polymorphism was closely associated with testis weight and epididymis weight (P<0.0001 and P=0.0016, respectively) with significant heavier testis weight and epididymis weight in boars carrying the A allele than boars with the C allele. A significant correlation was also observed between this polymorphism and total sperm in the ejaculate (P<0.01) as well as semen volume (P<0.05). No statistically significant association of the C678A polymorphism with sperm concentration and sperm motility was found.  相似文献   

9.
The recent discovery of sequences at the site of the Duchenne muscular dystrophy (DMD) gene in humans has opened up the possibility of a detailed molecular analysis of the genes in humans and in related mammalian species. Until relatively recently, there was no obvious mouse model of this genetic disease for the development of therapeutic strategies. The identification of a mouse X-linked mutant showing muscular dystrophy, mdx, has provided a candidate mouse genetic homologue to the DMD locus; the relatively mild pathological features of mdx suggest it may have more in common with mutations of the Becker muscular dystrophy type at the same human locus, however. But the close genetic linkage of mdx to G6PD and Hprt on the mouse X chromosome, coupled with its comparatively mild pathology, have suggested that the mdx mutation may instead correspond to Emery Dreifuss muscular dystrophy which itself is closely linked to DNA markers at Xq28-qter in the region of G6PD on the human X chromosome. Using an interspecific mouse domesticus/spretus cross, segregating for a variety of markers on the mouse X chromosome, we have positioned on the mouse X chromosome sequences homologous to a DMD cDNA clone. These sequences map provocatively close to the mdx mutation and unexpectedly distant from sparse fur, spf, the mouse homologue of OTC (ornithine transcarbamylase) which is closely linked to DMD on the human X chromosome.  相似文献   

10.
In female (XX) mammals, one of the two X chromosomes is inactivated to ensure an equal dose of X-linked genes with males (XY). X-chromosome inactivation in eutherian mammals is mediated by the non-coding RNA Xist. Xist is not found in metatherians (marsupials), and how X-chromosome inactivation is initiated in these mammals has been the subject of speculation for decades. Using the marsupial Monodelphis domestica, here we identify Rsx (RNA-on-the-silent X), an RNA that has properties consistent with a role in X-chromosome inactivation. Rsx is a large, repeat-rich RNA that is expressed only in females and is transcribed from, and coats, the inactive X chromosome. In female germ cells, in which both X chromosomes are active, Rsx is silenced, linking Rsx expression to X-chromosome inactivation and reactivation. Integration of an Rsx transgene on an autosome in mouse embryonic stem cells leads to gene silencing in cis. Our findings permit comparative studies of X-chromosome inactivation in mammals and pose questions about the mechanisms by which X-chromosome inactivation is achieved in eutherians.  相似文献   

11.
Retinitis pigmentosa (RP) is a group of retinal degeneration characterized by progressive visual field loss, night blindness and pigmentary retinopathy. Its prevalence is in the region of 1-2 in 5,000 of the general population, making it one of the commoner causes of blindness in early and middle life. Although 36-48% of RP patients are isolated cases, the remainder show autosomal dominant, autosomal recessive or X-linked modes of inheritance. The X-linked variety ( XLRP ) is found in 14-22% of RP families in the UK. In the present study, X chromosome-specific recombinant DNA probes which can detect restriction fragment length polymorphisms have been used to localize the XLRP gene(s) to a subregion of the X chromosome using linkage analysis. One of the probes, L1.28, has been shown to be closely linked to XLRP in five kindreds, with 95% confidence limits of 0-15 centimorgans (maximum LOD score of 7.89 at a distance of 3 centimorgans). This suggests that the XLRP locus lies on the proximal part of the short arm of the X chromosome. This probe is potentially useful for carrier detection and early diagnosis in about 40% of cases, provided that genetic heterogeneity can be excluded by analysis of further families.  相似文献   

12.
Duchenne muscular dystrophy (DMD) and its milder form, Becker muscular dystrophy (BMD), are allelic X-linked muscle disorders in man. The gene responsible for the disease has been cloned from knowledge of its map location at band Xp21 on the short arm of the X chromosome. The product of the DMD gene, a protein of relative molecular mass 400,000 (Mr 400K) recently named dystrophin, has been reported to co-purify with triads of mouse and rabbit skeletal muscle when assayed using polyclonal antibodies raised against fusion proteins encoded by regions of mouse DMD complementary DNA. Here we show that antibodies directed against synthetic peptides and fusion proteins derived from the N-terminal region of human DMD cDNA strongly react with an antigen present in skeletal muscle sarcolemma on cryostat sections of normal human muscle biopsies. This immunoreactivity is reduced or absent in muscle fibres from DMD patients but appears normal in muscle fibres from patients with other myopathic diseases. The same antibodies specifically react with a 400K protein in sodium dodecyl sulphate (SDS) extracts of normal human muscle subjected to Western blot analysis. We conclude that the product of the DMD gene is associated with the sarcolemma rather than with the triads and speculate that it strengthens the sarcolemma by anchoring elements of the internal cytoskeleton to the surface membrane.  相似文献   

13.
14.
Two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Imprinted XCI begins with the detection of Xist RNA expression on the paternal X?chromosome (Xp) at about the four-cell stage of embryonic development. In the embryonic tissues of the inner cell mass, a random form of XCI occurs in blastocysts that inactivates either Xp or the maternal X?chromosome (Xm). Both forms of XCI require the non-coding Xist RNA that coats the inactive X?chromosome from which it is expressed. Xist has crucial functions in the silencing of X-linked genes, including Rnf12 (refs 3, 4) encoding the ubiquitin ligase RLIM (RING finger LIM-domain-interacting protein). Here we show, by targeting a conditional knockout of Rnf12 to oocytes where RLIM accumulates to high levels, that the maternal transmission of the mutant X?chromosome (Δm) leads to lethality in female embryos as a result of defective imprinted XCI. We provide evidence that in Δm female embryos the initial formation of Xist clouds and Xp silencing are inhibited. In contrast, embryonic stem cells lacking RLIM are able to form Xist clouds and silence at least some X-linked genes during random XCI. These results assign crucial functions to the maternal deposit of Rnf12/RLIM for the initiation of imprinted XCI.  相似文献   

15.
X-linked spinal and bulbar muscular atrophy (Kennedy's disease) is an adult-onset form of motorneuron disease which may be associated with signs of androgen insensitivity. We have now investigated whether the androgen receptor gene on the proximal long arm of the X chromosome is a candidate gene for this disease. In patient samples we found androgen receptor gene mutations with increased size of a polymorphic tandem CAG repeat in the coding region. These amplified repeats were absolutely associated with the disease, being present in 35 unrelated patients and none of 75 controls. They segregated with the disease in 15 families, with no recombination in 61 meioses (the maximum log likelihood ratio (lod score) is 13.2 at a recombination rate of 0). The association is unlikely to be due to linkage disequilibrium, because 11 different disease alleles were observed. We conclude that enlargement of the CAG repeat in the androgen receptor gene is probably the cause of this disorder.  相似文献   

16.
Characterization of a murine gene expressed from the inactive X chromosome   总被引:43,自引:0,他引:43  
In mammals, equal dosage of gene products encoded by the X chromosome in male and female cells is achieved by X inactivation. Although X-chromosome inactivation represents the most extensive example known of long range cis gene regulation, the mechanism by which thousands of genes on only one of a pair of identical chromosomes are turned off is poorly understood. We have recently identified a human gene (XIST) exclusively expressed from the inactive X chromosome. Here we report the isolation and characterization of its murine homologue (Xist) which localizes to the mouse X inactivation centre region and is the first murine gene found to be expressed from the inactive X chromosome. Nucleotide sequence analysis indicates that Xist may be associated with a protein product. The similar map positions and expression patterns for Xist in mouse and man suggest that this gene may have a role in X inactivation.  相似文献   

17.
Sexual differentiation in placental mammals results from the action of a testis-determining gene encoded by the Y chromosome. This gene causes the indifferent gonad to develop as a testis, thereby initiating a hormonal cascade which produces a male phenotype. Recently, a candidate for the testis-determining gene (ZFY, Y-borne zinc-finger protein) has been cloned. The ZFY probe detects a male-specific (Y-linked) sequence in DNA from a range of eutherian mammals, as well as an X-linked sequence (ZFX) which maps to the human X chromosome. In marsupials it is also the Y chromosome that seems to determine the fate of the gonad, but not all sexual dimorphisms. Using the ZFY probe we find, surprisingly, that the ZFY homologous sequences are not on either the X or the Y chromosome in marsupials, but map to the autosomes. This implies ZFY is not the primary sex-determining gene in marsupials. Either the genetic pathways of sex determination in marsupials and eutherians differ, or they are identical and ZFY is not the primary signal in human sex determination.  相似文献   

18.
S F Wolf  B R Migeon 《Nature》1985,314(6010):467-469
DNA sequences of the X-chromosome-linked hypoxanthine phosphoribosyltransferase (HPRT) and glucose 6-phosphate dehydrogenase (G6PD) genes have revealed the presence of clusters of CpG dinucleotides, raising the possibility that such clusters are involved in the control of expression of these genes, which are expressed in all tissues. Although CpG clusters are not exclusive features of the X chromosome, the analysis of X-linked genes provides the means to determine whether CpG clusters are control elements; one of the two homologous X loci in female mammals is not expressed, so that active and inactive versions of the gene can be compared. In fact, it has been shown that these CpG clusters are undermethylated when the gene is active and extensively methylated when the gene is inactive. In addition to hypomethylation, chromatin hypersensitivity to endonuclease digestion is a known hallmark of regulatory sequences in eukaryotic genes. We report here that the CpG clusters of the active hprt and g6pd genes are not only undermethylated, but also hypersensitive to MspI, DNase I and S1 nuclease, further supporting the suggestion that they are involved in the control of expression of these genes.  相似文献   

19.
20.
C P Hunter  W B Wood 《Nature》1992,355(6360):551-555
Sex in Caenorhabditis elegans is determined by a regulatory cascade of seven interacting autosomal genes controlled by three X-linked genes in response to the X chromosome-to-autosome (X/A) ratio. XX animals (high X/A) develop as self-fertile hermaphrodites, and XO animals (low X/A) develop as males. The activity of the first gene in the sex-determining cascade, her-1, is required for male sexual development. XO her-1 loss-of-function mutants develop as self-fertile hermaphrodites, whereas XX her-1 gain-of-function mutants develop as masculinized intersexes. By genetic mosaic analysis using a fused free duplication linking her-1 to a cell-autonomous marker gene, we show here that her-1 expression in a sexually dimorphic cell is neither necessary nor sufficient for that cell to adopt a male fate. Our results suggest that her-1 is expressed in many, possibly all, cells and that its gene product can function non-autonomously through cell interactions to determine male sexual development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号