首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以基因组测序为先导的农牧渔业系统基因组学研究是一项需要国际间进行协同攻关和紧密合作的重大项目计划。这种以应用为目的的基础科学研究项目无论是对发达国家还是对发展中国家而言都是非常重要和必要的。然而,我们必须清醒地意识到,当人类基因组和其他许多同人类健康相关的基因组以及一些模式生物基因组已经或即将被测序时,重要的农作物、牲畜、水产品基因组所受到的重视还远远不够。虽然我们正面对诸如政策制订、资金申请、地方发展重点、研究团体共识及技术革新等多方面的问题和挑战,人们还是提出了许多有关大规模测序及其投资收益的倡议或计划。由于大规模测序即全基因组鸟枪法(Wh01e Genome Shotgun or WGS)所产生的序列草图能覆盖整个基因组95%至99%的区域,从基因组草图中识别的基因连带其他资源比如分子标记、大片段插入克隆和cDNA序列的知识,为农牧渔业和环境生物学提供了丰富的信息和大量的工具。一旦这项重大计划得以实施并取得成功,所有国家的分子生物学家、遗传学家、实验生物学家。无论富裕或贫穷,都将站在同一科学起点上,基础基因组学信息的又一次大爆发将使我们的生活和环境拥有一个更美好的未来。我们热切呼吁全世界的各个研究基金会,也呼吁各个国家和国际政府机构与组织共同支持这场伟大的项目计划。  相似文献   

2.
The past decade has seen the emergence of next-generation sequencing (NGS) technologies, which have revolutionized the field of human molecular genetics. With NGS, significant portions of the human genome can now be assessed by direct sequence analysis, highlighting normal and pathological variants of our DNA. Recent advances have also allowed the sequencing of complete genomes, by a method referred to as whole genome sequencing (WGS). In this work, we review the use of WGS in medical genetics, with specific emphasis on the benefits and the disadvantages of this technique for detecting genomic alterations leading to Mendelian human diseases and to cancer.  相似文献   

3.
4.
In contrast to both vertebrates and non-insect arthropods, little is known about the coagulation of hemolymph (hemostasis) in insects. We discuss the integration of the hemostatic response with other branches of the insect immune system. We also describe the present stage in the characterization of both soluble and cellular factors that contribute to hemostasis in insects. The factors of the well-characterized clotting cascades of vertebrates, primitive chelicerates and crustaceans are used to assess the implications of sequencing the whole Drosophila genome for searching candidate genes involved in hemostasis. Some striking similarities between blood clotting in vertebrates and the reaction of insect cells involved in hemolymph coagulation have implications for a phylogenetic comparison of hemostasis between divergent animal classes.  相似文献   

5.
6.
Dictyostelium discoideum is a eukaryotic microorganism that is attractive for the study of fundamental biological phenomena such as cell-cell communication, formation of multicellularity, cell differentiation and morphogenesis. Large-scale sequencing of the D. discoideum genome has provided new insights into evolutionary strategies evolved by transposable elements (TEs) to settle in compact microbial genomes and to maintain active populations over evolutionary time. The high gene density (about 1 gene/2.6 kb) of the D. discoideum genome leaves limited space for selfish molecular invaders to move and amplify without causing deleterious mutations that eradicate their host. Targeting of transfer RNA (tRNA) gene loci appears to be a generally successful strategy for TEs residing in compact genomes to insert away from coding regions. In D. discoideum, tRNA gene-targeted retrotransposition has evolved independently at least three times by both non-long termina l repeat (LTR) retrotransposons and retrovirus-like LTR retrotransposons. Unlike the nonspecifically inserting D. discoideum TEs, which have a strong tendency to insert into preexisting TE copies and form large and complex clusters near the ends of chromosomes, the tRNA gene-targeted retrotransposons have managed to occupy 75% of the tRNA gene loci spread on chromosome 2 and represent 80% of the TEs recognized on the assembled central 6.5-Mb part of chromosome 2. In this review we update the available information about D. discoideum TEs which emerges both from previous work and current large-scale genome sequencing, with special emphasis on the fact that tRNA genes are principal determinants of retrotransposon insertions into the D. discoideum genome. Received 10 May 2002; received after revision 10 June 2002; accepted 12 June 2002 RID="*" ID="*"Corresponding author.  相似文献   

7.
8.
We have analyzed the binding of the liver-specific microRNA-122 (miR-122) to three conserved target sites of hepatitis C virus (HCV) RNA, two in the non-structural protein 5B (NS5B) coding region and one in the 3′ untranslated region (3′UTR). miR-122 binding efficiency strongly depends on target site accessibility under conditions when the range of flanking sequences available for the formation of local RNA secondary structures changes. Our results indicate that the particular sequence feature that contributes most to the correlation between target site accessibility and binding strength varies between different target sites. This suggests that the dynamics of miRNA/Ago2 binding not only depends on the target site itself but also on flanking sequence context to a considerable extent, in particular in a small viral genome in which strong selection constraints act on coding sequence and overlapping cis-signals and model the accessibility of cis-signals. In full-length genomes, single and combination mutations in the miR-122 target sites reveal that site 5B.2 is positively involved in regulating overall genome replication efficiency, whereas mutation of site 5B.3 showed a weaker effect. Mutation of the 3′UTR site and double or triple mutants showed no significant overall effect on genome replication, whereas in a translation reporter RNA, the 3′UTR target site inhibits translation directed by the HCV 5′UTR. Thus, the miR-122 target sites in the 3′-region of the HCV genome are involved in a complex interplay in regulating different steps of the HCV replication cycle.  相似文献   

9.
10.
11.
12.
13.
When a retrovirus infects a cell, its RNA genome is reverse transcribed into a double-stranded DNA, which is then permanently integrated into the host chromosome. Integration is one of the essential steps in the retroviral life cycle. Many transposable elements also move around and integrate into the host genome as part of their life cycle, some through RNA intermediates and some through 'cut and paste' mechanisms. Integration of retroviruses and transposable elements into 'sensitive areas' of the genome can cause irreparable damage. On the other hand, because of their ability to integrate permanently, and the relatively efficient rates of transgenesis, retroviruses and transposable elements are widely used as gene delivery tools in basic research and gene therapy trials. Recent events in gene therapy treatments for X-linked severe combined immunity deficiencies (X-SCID) have highlighted both the promise and some of the risks involved with utilizing retroviruses. Nine of 11 children were successfully treated for X-SCID using a retrovirus carrying the gene mutated in this disease. However, later two of these children developed leukemias because of retroviral integrations in the putative oncogene LMO2 [1]. A third child has also been demonstrated to have an integration in LMO2, but is as of yet nonsymptomatic [2]. It is a bit difficult to explain the high frequency of integrations into the same gene using a random model of retroviral integration, and there has been evidence for decades that retroviral integrations may not be random. But the data were somewhat limited in their power to determine the precise nature of the integration biases. The completion of the human genome sequence coupled with sensitive polymerase chain reaction techniques and an ever-decreasing cost of sequencing has given a powerful new tool to the study of integration site selection. In this review, we describe the findings from several recent global surveys of target site selection by retroviruses and transposable elements, and discuss the possible ramifications of these findings to both mechanisms of action and to the use of these elements as gene therapy vectors.  相似文献   

14.
15.
The vertebrate connexin family   总被引:4,自引:0,他引:4  
Connexins are chordate-specific transmembrane proteins that can form gap junctional channels between adjacent cells. With the progress in vertebrate genome sequencing, it is now possible to reconstruct the main lines in the evolution of the connexin family from fishes to mammals. Four connexin groups are only found in fishes. Otherwise, the differences between fishes and mammals can be explained by two gene losses (Cx39.9 and Cx43.4) after the divergence of the Reptilia, and three gene duplications (the generation of Cx26 and 30 from a preCx26/30 sequence, Cx30.3 and 31.1 from a preCx30.3/ 31.1 sequence, and Cx31.3 from an uncertain origin). Orthologs of most connexins can be found throughout the vertebrates from fishes to mammals. As judged from the recently defined connexins in tunicates, the original connexin might be related to the ortholog groups of Cx36, 39.2, 43.4, 45 or 47. Received 1 December 2005; received after revision 8 January 2005; accepted 31 January 2006  相似文献   

16.
17.
The concept that aneuploidy is a characteristic of malignant cells has long been known; however, the idea that aneuploidy is an active contributor to tumorigenesis, as opposed to being an associated phenotype, is more recent in its evolution. At the same time, we are seeing the emergence of novel roles for tumor suppressor genes and oncogenes in genome stability. These include the adenomatous polyposis coli gene (APC), p53, the retinoblastoma susceptibility gene (RB1), and Ras. Originally, many of these genes were thought to be tumor suppressive or oncogenic solely because of their role in proliferative control. Because of the frequency with which they are disrupted in cancer, chromosome instability caused by their dysfunction may be more central to tumorigenesis than previously thought. Therefore, this review will highlight how the proper function of cell cycle regulatory genes contributes to the maintenance of genome stability, and how their mutation in cancer obligatorily connects proliferation and chromosome instability.  相似文献   

18.
Transformation: a tool for studying fungal pathogens of plants   总被引:18,自引:0,他引:18  
Plant diseases caused by plant pathogenic fungi continuously threaten the sustainability of global crop production. An effective way to study the disease-causing mechanisms of these organisms is to disrupt their genes, in both a targeted and random manner, so as to isolate mutants exhibiting altered virulence. Although a number of techniques have been employed for such an analysis, those based on transformation are by far the most commonly used. In filamentous fungi, the introduction of DNA by transformation typically results in either the heterologous (illegitimate) integration or the homologous integration of the transforming DNA into the target genome. Homologous integration permits a targeted gene disruption by replacing the wild-type allele on the genome with a mutant allele on transforming DNA. This process has been widely used to determine the role of newly isolated fungal genes in pathogenicity. The heterologous integration of transforming DNA causes a random process of gene disruption (insertional mutagenesis) and has led to the isolation of many fungal mutants defective in pathogenicity. A big advantage of insertional mutagenesis over the more traditional chemical or radiation mutagenesis procedures is that the mutated gene is tagged by transforming DNA and can subsequently be cloned using the transforming DNA. The application of various transformation-based techniques for fungal gene manipulation and how they have increased our understanding and appreciation of some of the most serious plant pathogenic fungi are discussed. Received 9 May 2001; received after revision 2 July 2001; accepted 3 July 2001  相似文献   

19.
In 2010, a new recessive cohesinopathy disorder, designated Warsaw breakage syndrome (WABS), was described. The individual with WABS displayed microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Cytogenetic analysis revealed mitomycin C (MMC)-induced chromosomal breakage; however, an additional sister chromatid cohesion defect was also observed. WABS is genetically linked to bi-allelic mutations in the ChlR1/DDX11 gene which encodes a protein of the conserved family of Iron–Sulfur (Fe–S) cluster DNA helicases. Mutations in the budding yeast ortholog of ChlR1, known as Chl1, were known to cause sister chromatid cohesion defects, indicating a conserved function of the gene. In 2012, three affected siblings were identified with similar symptoms to the original WABS case, and found to have a homozygous mutation in the conserved Fe–S domain of ChlR1, confirming the genetic linkage. Significantly, the clinically relevant mutations perturbed ChlR1 DNA unwinding activity. In addition to its genetic importance in human disease, ChlR1 is implicated in papillomavirus genome maintenance and cancer. Although its precise functions in genome homeostasis are still not well understood, ongoing molecular studies of ChlR1 suggest the helicase plays a critically important role in cellular replication and/or DNA repair.  相似文献   

20.
Comparative genome analyses reveal that most functional domains of human genes have homologs in widely divergent species. These shared functional domains, however, are differentially shuffled among evolutionary lineages to produce an increasing number of domain architectures. Combined with duplication and adaptive evolution, domain shuffling is responsible for the great phenotypic complexity of higher eukaryotes. Although the domain-shuffling hypothesis is generally accepted, determining the molecular mechanisms that lead to domain shuffling and novel gene creation has been challenging, as sequence features accompanying the formation of known genes have been obscured by accumulated mutations. The growing availability of genome sequences and EST databases allows us to study the characteristics of newly emerged genes. Here we review recent genome-wide DNA and EST analyses, and discuss the three major molecular mechanisms of gene formation: (1) atypical spicing, both within and between genes, followed by adaptation, (2) tandem and interspersed segmental duplications, and (3) retrotransposition events. Received 18 October 2006; received after revision 18 November 2006; accepted 28 November 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号