首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whereas research on CD1d has emphasized a few glycosyl ceramides, the broader family of four human CD1 antigen-presenting molecules binds hundreds of distinct self-lipids. Individual lipid types bind within CD1 grooves in different ways, such that they partially fill the groove, match the groove volume, or protrude substantially from the groove. These differing modes of binding can now be connected to differing immunological functions, as individual lipids can act as stimulatory antigens, inhibitory ligands, or space-filling scaffolds. Because each type of CD1 protein folds to produce antigen-binding grooves with differing sizes and shapes, CD1a, CD1b, CD1c, CD1d, and CD1e have distinct mechanisms of capturing self-lipids and exchanging them for foreign lipids. The size discrepancy between endogeneous lipids and groove volume is most pronounced for CD1b. Recent studies show that the large CD1b cavity can simultaneously bind two self-lipids, the antigen, and its scaffold lipid, which can be exchanged for one large bacterial lipid. In this review, we will highlight recent studies showing how cells regulate lipid antigen loading and the roles CD1 groove structures have in control of the presentation of chemically diverse lipids to T cells.  相似文献   

2.
Lipid transport pathways in mammalian cells   总被引:2,自引:0,他引:2  
Summary A major deficit in our understanding of membrane biogenesis in eukaryotes is the definition of mechanisms by which the lipid constituents of cell membranes are transported from their sites of intracellular synthesis to the multiplicity of membranes that constitute a typical cell. A variety of approaches have been used to examine the transport of lipids to different organelles. In many cases the development of new methods has been necessary to study the problem. These methods include cytological examination of cells labeled with fluorescent lipid analogs, improved methods of subcellular fractionation, in situ enzymology that demonstrates lipid translocation by changes in lipid structure, and cell-free reconstitution with isolated organelles. Several general patterns of lipid transport have emerged but there does not appear to be a unifying mechanism by which lipids move among different organelles. Significant evidence now exists for vesicular and metabolic energy-dependent mechanisms as well as mechanisms that are clearly independent of cellular ATP content.  相似文献   

3.
4.
核受体的研究近几年已有飞速的发展。LXRa(Liver X Receptor a)是一种与脂类代谢有关的核受体。研究发现LXRa的靶基因具有调节脂类的吸收、运输、转化和生物合成的功能,此外,LXRa在糖类的代谢等方面也有重要的调控作用。研究结果表明LXRa与动脉粥样硬化的发生有非常密切的关系。目前利用LXRa为靶标进行抗动脉粥样硬化药物筛选已经成为一个重要的研究方法。  相似文献   

5.
The functional significance of the lipid-protein interface in photosynthetic membranes, mainly in thylakoids, is reviewed with emphasis on membrane structure and dynamics. The lipid-protein interface is identified primarily by the restricted molecular dynamics of its lipids as compared with the dynamics in the bulk lipid phase of the membrane. In a broad sense, lipid-protein interfaces comprise solvation shell lipids that are weakly associated with the hydrophobic surface of transmembrane proteins but also include lipids that are strongly and specifically bound to membrane proteins or protein assemblies. The relation between protein-associated lipids and the overall fluidity of the thylakoid membrane is discussed. Spin label electron paramagnetic resonance spectroscopy has been identified as the technique of choice to characterize the protein solvation shell in its highly dynamic nature; biochemical and direct structural methods have revealed an increasing number of protein-bound lipids. The structural and functional roles of these protein-bound lipids are mustered, but in most cases they remain to be determined. As suggested by recent data, the interaction of the non-bilayer-forming lipid, monogalactosyldyacilglycerol (MGDG), with the main light-harvesting chlorophyll a/b-binding protein complexes of photosystem-II (LHCII), the most abundant lipid and membrane protein components on earth, play multiple structural and functional roles in developing and mature thylakoid membranes. A brief outlook to future directions concludes this review.  相似文献   

6.
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.  相似文献   

7.
Triacylglycerols (TAGs), steryl esters (SEs) and wax esters (WEs) form the group of neutral lipids. Whereas TAGs are present in all types of cell, the occurrence of SEs in prokaryotes is questionable, and the presence of WEs as storage molecules is restricted to plants and a few bacteria. Here, we summarize recent knowledge on the formation, storage and degradation of TAGs and SEs in various cell types. We describe the biochemical pathways involved in TAG and SE synthesis and discuss the subcellular compartmentation of these processes. Recently, several novel enzymes governing the metabolism of storage lipids have been identified and characterized. Regulatory aspects of neutral lipid storage are just beginning to be understood. Finally, we describe consequences of defects in neutral lipid metabolism. Since severe diseases like atherosclerosis, obesity and type 2 diabetes are caused by lipid accumulation, mechanisms underlying neutral lipid synthesis, depot formation and mobilization are of major interest for curing such diseases that are increasingly associated with modern civilization. Received 18 January 2006; received after revision 7 March 2006; accepted 16 March 2006  相似文献   

8.
Metabolic activity indicative of cellular demand is emerging as a key player in cell fate decision. Numerous studies have demonstrated that diverse metabolic pathways have a critical role in the control of the proliferation, differentiation and quiescence of stem cells. The identification of neural stem/progenitor cells (NSPCs) and the characterization of their development and fate decision process have provided insight into the regenerative potential of the adult brain. As a result, the potential of NSPCs in cell replacement therapies for neurological diseases is rapidly growing. The aim of this review is to discuss the recent findings on the crosstalk among key regulators of NSPC development and the metabolic regulation crucial for the function and cell fate decisions of NSPCs. Fundamental understanding of the metabolic circuits in NSPCs may help to provide novel approaches for reactivating neurogenesis to treat degenerative brain conditions and cognitive decline.  相似文献   

9.
The use of metabolomics to dissect plant responses to abiotic stresses   总被引:1,自引:0,他引:1  
Plant metabolism is perturbed by various abiotic stresses. As such the metabolic network of plants must be reconfigured under stress conditions in order to allow both the maintenance of metabolic homeostasis and the production of compounds that ameliorate the stress. The recent development and adoption of metabolomics and systems biology approaches enable us not only to gain a comprehensive overview, but also a detailed analysis of crucial components of the plant metabolic response to abiotic stresses. In this review we introduce the analytical methods used for plant metabolomics and describe their use in studies related to the metabolic response to water, temperature, light, nutrient limitation, ion and oxidative stresses. Both similarity and specificity of the metabolic responses against diverse abiotic stress are evaluated using data available in the literature. Classically discussed stress compounds such as proline, γ-amino butyrate and polyamines are reviewed, and the widespread importance of branched chain amino acid metabolism under stress condition is discussed. Finally, where possible, mechanistic insights into metabolic regulatory processes are discussed.  相似文献   

10.
11.
The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.  相似文献   

12.
Phospholipase D: a lipid centric review   总被引:14,自引:0,他引:14  
Phospholipase D (PLD) hydrolyzes the phosphodiester bond of the glycerolipid phosphatidylcholine, resulting in the production of phosphatidic acid and free choline. Phosphatidic acid is widely considered to be the intracellular lipid mediator of many of the biological functions attributed to PLD. However, phosphatidic acid is a tightly regulated lipid in cells and can be converted to other potentially bioactive lipids, including diacylglycerol and lysophosphatidic acid. PLD activities have been described in multiple organisms, including plants, mammals, bacteria and yeast. In mammalian systems, PLD activity regulates the actin cytoskeleton, vesicle trafficking for secretion and endocytosis, and receptor signaling. PLD is in turn regulated by phosphatidylinositol-4,5-bisphosphate, protein kinase C and ADP Ribosylation Factor and Rho family GTPases. This review focuses on the lipid precursors and products of mammalian PLD metabolism, especially phosphatidic acid and the roles this lipid performs in the mediation of the functions of PLD.  相似文献   

13.
It is becoming increasingly clear that lipids are key regulators of cellular function and that these effects are quite diverse. First, the lipid environment in the cellular membrane bilayer is important in maintaining the normal function of receptors, enzymes, transporters and so on that are localized in the membrane. Phosphoinositides are important regulators of signalling molecules. Lipid metabolites formed by a number of enzymes including the cyclooxygenases, lipoxygenases and P450s also mediate important cellular functions. Fatty acids and lipid metabolites can also activate the nuclear peroxisome proliferator-activated receptors. Finally, a wide variety of lipid molecules are generated nonenzymatically by free-radical mechanisms that also exert potent biological effects in a wide variety of organs. Presented are a series of eight reviews that broadly cover all of these topics in some detail.  相似文献   

14.
Phosphoinositides and signal transduction   总被引:17,自引:0,他引:17  
Phosphoinositides comprise a family of eight minor membrane lipids which play important roles in many signal transducing pathways in the cell. Signaling through various phosphoinositides has been shown to mediate cell growth and proliferation, apoptosis, cytoskeletal changes, insulin action and vesicle trafficking. A number of advances in signal transduction in the last decade has resulted in the discovery of a growing list of proteins which directly interact with high affinity and specificity with distinct phosphoinositides. Equally important, a number of phosphoinositide binding domains such as the pleckstrin homology domain have emerged as critical mediators of phosphoinositide signaling. Here, recent advances in phosphoinositide signaling are discussed. The aim of this review is to highlight particularly exciting advances made in the field over the last few years. The regulation of phosphoinositide metabolism by lipid kinases, phosphatases and phospholipases is reviewed, and considerable emphasis is placed on phosphoinositide-binding proteins. Finally, the role of these lipids in regulating signaling pathways and cell function is described.  相似文献   

15.
16.
Translation of nutrient stimuli through intracellular signaling is important for adaptation and regulation of metabolic processes, while deregulation by either genetic or environmental factors predisposes towards the development of metabolic disorders. Besides providing energy, fatty acids act as prominent signaling molecules by altering cell membrane structures, affecting the lipid modification status of proteins, and by modulating ligand-activated nuclear receptor activity. Given their highly hydrophobic nature, fatty acids in the aqueous intracellular compartment are bound to small intracellular lipid binding proteins which function as intracellular carriers of these hydrophobic components. This review describes recent advances in identifying intracellular pathways for cytosolic fatty acid signaling through ligand activated receptors by means of small intracellular lipid binding proteins. The mechanism behind intracellular fatty acid transport and subsequent nuclear receptor activation is an emerging concept, and advances in understanding this process provide new potential therapeutic targets towards the treatment of metabolic disorders.  相似文献   

17.
Although a change in life-style is often the method of first choice for lipid lowering, lipid-lowering drugs, in general, help to control elevated levels of different forms of lipids in patients with hyperlipidemia. While one group of drugs, statins, lowers cholesterol, the other group, fibrates, is known to take care of fatty acids and triglycerides. In addition, other drugs, such as ezetimibe, colesevelam, torcetrapib, avasimibe, implitapide, and niacin are also being considered to manage hyperlipidemia. As lipids are very critical for cardiovascular diseases, these drugs reduce fatal and nonfatal cardiovascular abnormalities in the general population. However, a number of recent studies indicate that apart from their lipidlowering activities, statins and fibrates exhibit multiple functions to modulate intracellular signaling pathways, inhibit inflammation, suppress the production of reactive oxygen species, and modulate T cell activity. Therefore, nowadays, these drugs are being considered as possible therapeutics for several forms of human disorders including cancer, autoimmunity, inflammation, and neurodegeneration. Here I discuss these applications in the light of newly discovered modes of action of these drugs. Received 5 September 2005; received after revision 29 December 2005; accepted 26 January 2006  相似文献   

18.
Calorie restriction and the nutrient sensing signaling pathways   总被引:3,自引:0,他引:3  
Calorie restriction (CR) is the most potent regimen known to extend the life span in multiple species. CR has also been shown to ameliorate several age-associated disorders in mammals and perhaps humans. CR induces diverse metabolic changes in organisms, and it is currently unclear whether and how these metabolic changes lead to life span extension. Recent studies in model systems have provided insight into the molecular mechanisms by which CR extends life span. In this review, we summarize and provide recent updates on multiple nutrient signaling pathways that have been connected to CR and longevity regulation. The roles of highly conserved longevity regulators – the Sirtuin family – in CR are also discussed. Received 25 August 2006; received after revision 9 October 2006; accepted 13 December 2006  相似文献   

19.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large eukaryotic gene family that transports and regulates the metabolism of sterols and phospholipids. The original classification of the family based on oxysterol-binding activity belies the complex dual lipid-binding specificity of the conserved OSBP homology domain (OHD). Additional protein- and membrane-interacting modules mediate the targeting of select OSBP/ORPs to membrane contact sites between organelles, thus positioning the OHD between opposing membranes for lipid transfer and metabolic regulation. This unique subcellular location, coupled with diverse ligand preferences and tissue distribution, has identified OSBP/ORPs as key arbiters of membrane composition and function. Here, we will review how molecular models of OSBP/ORP-mediated intracellular lipid transport and regulation at membrane contact sites relate to their emerging roles in cellular and organismal functions.  相似文献   

20.
Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号