首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以基因组测序为先导的农牧渔业系统基因组学研究是一项需要国际间进行协同攻关和紧密合作的重大项目计划。这种以应用为目的的基础科学研究项目无论是对发达国家还是对发展中国家而言都是非常重要和必要的。然而,我们必须清醒地意识到,当人类基因组和其他许多同人类健康相关的基因组以及一些模式生物基因组已经或即将被测序时,重要的农作物、牲畜、水产品基因组所受到的重视还远远不够。虽然我们正面对诸如政策制订、资金申请、地方发展重点、研究团体共识及技术革新等多方面的问题和挑战,人们还是提出了许多有关大规模测序及其投资收益的倡议或计划。由于大规模测序即全基因组鸟枪法(Wh01e Genome Shotgun or WGS)所产生的序列草图能覆盖整个基因组95%至99%的区域,从基因组草图中识别的基因连带其他资源比如分子标记、大片段插入克隆和cDNA序列的知识,为农牧渔业和环境生物学提供了丰富的信息和大量的工具。一旦这项重大计划得以实施并取得成功,所有国家的分子生物学家、遗传学家、实验生物学家。无论富裕或贫穷,都将站在同一科学起点上,基础基因组学信息的又一次大爆发将使我们的生活和环境拥有一个更美好的未来。我们热切呼吁全世界的各个研究基金会,也呼吁各个国家和国际政府机构与组织共同支持这场伟大的项目计划。  相似文献   

2.
The study of candidate genes over the past three decades has yielded notable successes in common-disease genetics. During this time, however, interpretation of genetic association studies has been hampered by the use of clinical cohorts of inadequate power and insufficient information on genetic variation in candidate genes. The unavailability of highthroughput and low-cost genotyping technologies has also limited the scope of complex-disease genetic studies. More recently, however, the sequencing and characterization of variation within the human genome has revolutionized genetic studies and enabled full genome-wide scans for genes associated with disease. The identification of disease-associated (causative) genes has illuminated disease mechanisms. The translation of this knowledge into direct clinical benefit in diagnosis, prognosis and therapy for an individual’s disease still remains a challenge. Received 11 September 2006; received after revision 17 December 2006; accepted 18 January 2007  相似文献   

3.
4.
Of all five senses, olfaction is the most complex molecular mechanism, as it comprises hundreds of receptor proteins enabling it to detect and discriminate thousands of odorants. Until lately, the understanding of this highly sophisticated sensory neuronal pathway has been rather sketchy. The sequencing of the human genome and the consequent advent of new genomic tools have opened new opportunities to better understand this multifaceted biological system. Here, we present the relevant progresses made in the last decade and highlight the possible genetic mechanisms of human olfactory variability.  相似文献   

5.
Pharmacogenetics and disease genetics of complex diseases   总被引:4,自引:0,他引:4  
Advances in technologies and the availability of a single nucleotide polymorphism (SNP) map are beginning to show the true potential for the human genome project to affect patient healthcare. A whole genome scan, the use of 100,000–300,000 SNPs across the genome, is now possible. Use of traditional approaches and the whole genome scan will result in identification of disease susceptibility genes and development of many new treatments in the longer term. In the shorter term, the goal will be to predict those patients at risk to experience an adverse reaction or those with a high probability for improved efficacy (i.e. pharmacogenetics). As progress is made in the area of disease genetics and pharmacogenetics, our understanding of disease susceptibility and its interrelationship with drug response will improve, making targeted therapy (i.e. the right drug to the right patient) a reality.Received 19 December 2002; received after revision 14 February 2003; accepted 20 February 2003  相似文献   

6.
The RecQ helicases belong to the Superfamily II group of DNA helicases, and are defined by amino acid motifs that show sequence similarity to the catalytic domain of Escherichia coli RecQ. RecQ helicases have crucial roles in the maintenance of genome stability. In humans, there are five RecQ helicases and deficiencies in three of them cause genetic disorders characterised by cancer predisposition, premature aging and/or developmental abnormalities. RecQ helicase-deficient cells exhibit aberrant genetic recombination and/or DNA replication, which result in chromosomal instability and a decreased potential for proliferation. Here, we review the current knowledge of the molecular genetics of RecQ helicases, focusing on the human RecQ helicase disorders and mouse models of these conditions. Received 9 March 2007; received after revision 26 April 2007; accepted 2 May 2007  相似文献   

7.
8.
Inter- and intrapopulation studies of ancient humans   总被引:1,自引:0,他引:1  
For a genetic analysis of ancient human populations to be useful, it must be demonstrated that the DNA samples under investigation represent a single human population. Toward that end, we have analyzed human DNA from the Windover site (7000–8000 BP). MHC-I analysis, using allele-specific oligonucleotide hybridization to PCR amplified Windover DNA, microsatellite analysis by PCR of the APO-A2 repeat and mtD-loop 3 region sequencing on multiple individuals spanning nearly the full range of estimated burial dates all confirm the hypothesis that there is a persistence of both nuclear and mitochondrial haplotypes at Windover throughout its entire period of use. Thus, Windover can be considered a single population. Neighbor-joining tree analysis of mtDNA sequences suggests that some mitochondrial types are clearly related to extant Amerind types, whereas others, more distantly related, may reflect genetically distinct origins. A more complete sequence analysis will be required to firmly resolve this issue. Calibrating genetic relationships deduced by tree analysis, radiocarbon dates and burial position, yields a human mtD-loop DNA rate of evolution of 3700 to 14,000 years per percent change. Both values are within the range of recent, independently calculated values using estimates of evolutionary divergence or theoretical population genetics. Thus we are beginning to relaize the promise of ancient DNA analysis to experimentally answer heretofore unapproachable questions regarding human prehistory and genetic change.  相似文献   

9.
10.
11.
Dictyostelium discoideum is a eukaryotic microorganism that is attractive for the study of fundamental biological phenomena such as cell-cell communication, formation of multicellularity, cell differentiation and morphogenesis. Large-scale sequencing of the D. discoideum genome has provided new insights into evolutionary strategies evolved by transposable elements (TEs) to settle in compact microbial genomes and to maintain active populations over evolutionary time. The high gene density (about 1 gene/2.6 kb) of the D. discoideum genome leaves limited space for selfish molecular invaders to move and amplify without causing deleterious mutations that eradicate their host. Targeting of transfer RNA (tRNA) gene loci appears to be a generally successful strategy for TEs residing in compact genomes to insert away from coding regions. In D. discoideum, tRNA gene-targeted retrotransposition has evolved independently at least three times by both non-long termina l repeat (LTR) retrotransposons and retrovirus-like LTR retrotransposons. Unlike the nonspecifically inserting D. discoideum TEs, which have a strong tendency to insert into preexisting TE copies and form large and complex clusters near the ends of chromosomes, the tRNA gene-targeted retrotransposons have managed to occupy 75% of the tRNA gene loci spread on chromosome 2 and represent 80% of the TEs recognized on the assembled central 6.5-Mb part of chromosome 2. In this review we update the available information about D. discoideum TEs which emerges both from previous work and current large-scale genome sequencing, with special emphasis on the fact that tRNA genes are principal determinants of retrotransposon insertions into the D. discoideum genome. Received 10 May 2002; received after revision 10 June 2002; accepted 12 June 2002 RID="*" ID="*"Corresponding author.  相似文献   

12.
When a retrovirus infects a cell, its RNA genome is reverse transcribed into a double-stranded DNA, which is then permanently integrated into the host chromosome. Integration is one of the essential steps in the retroviral life cycle. Many transposable elements also move around and integrate into the host genome as part of their life cycle, some through RNA intermediates and some through 'cut and paste' mechanisms. Integration of retroviruses and transposable elements into 'sensitive areas' of the genome can cause irreparable damage. On the other hand, because of their ability to integrate permanently, and the relatively efficient rates of transgenesis, retroviruses and transposable elements are widely used as gene delivery tools in basic research and gene therapy trials. Recent events in gene therapy treatments for X-linked severe combined immunity deficiencies (X-SCID) have highlighted both the promise and some of the risks involved with utilizing retroviruses. Nine of 11 children were successfully treated for X-SCID using a retrovirus carrying the gene mutated in this disease. However, later two of these children developed leukemias because of retroviral integrations in the putative oncogene LMO2 [1]. A third child has also been demonstrated to have an integration in LMO2, but is as of yet nonsymptomatic [2]. It is a bit difficult to explain the high frequency of integrations into the same gene using a random model of retroviral integration, and there has been evidence for decades that retroviral integrations may not be random. But the data were somewhat limited in their power to determine the precise nature of the integration biases. The completion of the human genome sequence coupled with sensitive polymerase chain reaction techniques and an ever-decreasing cost of sequencing has given a powerful new tool to the study of integration site selection. In this review, we describe the findings from several recent global surveys of target site selection by retroviruses and transposable elements, and discuss the possible ramifications of these findings to both mechanisms of action and to the use of these elements as gene therapy vectors.  相似文献   

13.
Evidence from the literature keeps highlighting the impact of mutualistic bacterial communities of the gut microbiota on human health. The gut microbita is a complex ecosystem of symbiotic bacteria which contributes to mammalian host biology by processing, otherwise, indigestible nutrients, supplying essential metabolites, and contributing to modulate its immune system. Advances in sequencing technologies have enabled structural analysis of the human gut microbiota and allowed detection of changes in gut bacterial composition in several common diseases, including cardiometabolic disorders. Biological signals sent by the gut microbiota to the host, including microbial metabolites and pro-inflammatory molecules, mediate microbiome–host genome cross-talk. This rapidly expanding line of research can identify disease-causing and disease-predictive microbial metabolite biomarkers, which can be translated into novel biodiagnostic tests, dietary supplements, and nutritional interventions for personalized therapeutic developments in common diseases. Here, we review results from the most significant studies dealing with the association of products from the gut microbial metabolism with cardiometabolic disorders. We underline the importance of these postbiotic biomarkers in the diagnosis and treatment of human disorders.  相似文献   

14.
Insects mostly develop on decaying and contaminated organic matter and often serve as vectors of biologically transmitted diseases by transporting microorganisms to the plant and animal hosts. As such, insects are constantly ingesting microorganisms, a small fraction of which reach their epithelial surfaces, mainly their digestive tract, where they can establish relationships ranging from symbiosis to mutualism or even parasitism. Understanding the tight physical, genetic, and biochemical interactions that takes place between intestinal epithelia and either resident or infectious microbes has been a long-lasting objective of the immunologist. Research in this field has recently been re-vitalized with the development of deep sequencing techniques, which allow qualitative and quantitative characterization of gut microbiota. Interestingly, the recent identification of regenerative stem cells in the Drosophila gut together with the initial characterization of Drosophila gut microbiota have opened up new avenues of study aimed at understanding the mechanisms that regulate the dialog between the Drosophila gut epithelium and its microbiota of this insect model. The fact that some of the responses are conserved across species combined with the power of Drosophila genetics could make this organism model a useful tool to further elucidate some aspects of the interaction occurring between the microbiota and the human gut.  相似文献   

15.
Following the sequencing of the human genome and many other organisms, research on protein-coding genes and their functions (functional genomics) has intensified. Subsequently, with the observation that proteins are indeed the molecular effectors of most cellular processes, the discipline of proteomics was born. Clearly, proteins do not function as single entities but rather as a dynamic network of team players that have to communicate. Though genetic (yeast two-hybrid Y2H) and biochemical methods (co-immunoprecipitation Co-IP, affinity purification AP) were the methods of choice at the beginning of the study of protein–protein interactions (PPI), in more recent years there has been a shift towards proteomics-based methods and bioinformatics-based approaches. In this review, we first describe in depth PPIs and we make a strong case as to why unraveling the interactome is the next challenge in the field of proteomics. Furthermore, classical methods of investigation of PPIs and structure-based bioinformatics approaches are presented. The greatest emphasis is placed on proteomic methods, especially native techniques that were recently developed and that have been shown to be reliable. Finally, we point out the limitations of these methods and the need to set up a standard for the validation of PPI experiments.  相似文献   

16.
During the 1960s and 1970s population geneticists pushed beyond models of single genes to grapple with the effect on evolution of multiple genes associated by linkage. The resulting models of multiple interacting loci suggested that blocks of genes, maybe even entire chromosomes or the genome itself, should be treated as a unit. In this context, Richard Lewontin wrote his famous 1974 book The Genetic Basis of Evolutionary Change, which concludes with an argument for considering the entire genome as the unit of selection as a result of linkage. Why did Lewontin and others devote so much intellectual energy to the “complications of linkage” in the 1960s and 1970s? We argue that this attention to linkage should be understood in the context of research on chromosomal inversions and co-adapted gene complexes that occupied mid-century evolutionary genetics. For Lewontin, the complications of linkage were an extension of this chromosomal focus expressed in the new language of models for linkage disequilibrium.  相似文献   

17.
18.
To have sex, or not to have sex, is a question posed by many microorganisms. In favor of a sexual lifestyle is the associated rearrangement of genetic material that confers potential fitness advantages, including resistance to antimicrobial agents. The asexual lifestyle also has benefits, as it preserves complex combinations of genes that may be optimal for pathogenesis. For this reason, it was thought that several pathogenic fungi favored strictly asexual modes of reproduction. Recent approaches using genome sequencing, population analysis, and experimental techniques have now revised this simplistic picture. It is now apparent that many pathogenic fungi have retained the ability to undergo sexual reproduction, although reproduction is primarily clonal in origin. In this review, we highlight the current understanding of sexual programs in the Candida clade of species. We also examine evidence that sexual-related processes can be used for functions in addition to mating and recombination in these organisms.  相似文献   

19.
Mitochondrial defects and hearing loss   总被引:11,自引:0,他引:11  
The techniques of human molecular genetics have been rapidly applied to the study of hearing loss. These studies have implicated more than 60 loci as causes of nonsyndromic hearing loss. Mutations at more than a dozen nuclear genes have been demonstrated to cause hearing loss, and these have been covered in recent reviews. However, a perhaps unexpected feature of the molecular characterization of human hearing loss has been the occurrence of mutations in the mitochondrial DNA (mtDNA). The importance of mitochondrial function in hearing is emphasized by the recent discovery of mutations in a nuclear-encoded mitochondrial protein which results in hearing loss. This article reviews the current status of our knowledge of mtDNA mutations that have been shown to cause hearing loss, and the suggestion of potential molecular, cellular and tissue-specific pathophysiological mechanisms by which dysfunction of mitochondria may lead to a loss of hearing.  相似文献   

20.
Summary Five topics concerning medical population genetics have been selected for discussion: in the field of population cytogenetics, the frequency of chromosomal aberrations and the roles of mutation and selection in the maintenance of balanced rearrangements are studied; the long term genetic effects of treatment and prevention of genetic diseases are reviewed; the relationships between malaria and the sickle-cell trait are discussed; some recent works concerning human DNA polymorphisms in the field of population, genetics are presented, and finally, some methods of genetic epidemiology are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号