首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于Adams建立考虑摩擦打滑和保持架效应的高速列车轴箱轴承完全动力学模型,分析高速列车轴箱轴承4种典型缺陷下滚子与保持架的故障动力学响应;通过EMD-包络谱抓取4种典型缺陷下的微弱故障信号特征频率,分析现有故障理论特征频率评估方法的局限性,并将EMD-包络谱方法抓取的特征频率与理论计算故障特征频率结果进行对比。研究结果表明:无论轴承是否存在缺陷,滚子的打滑率均在非承载区有所增大;外圈缺陷会导致保持架角速度比率呈正弦半波周期性变化;内圈缺陷会导致滚子角速度波动较大,保持架角速度偏高于理论角速度,保持架角速度比率呈非周期性激励波动变化,且波动频率较高;滚子缺陷仅对该缺陷的滚子的动力学特性影响较大;保持架缺陷对滚子与保持架的动力学特性的影响较小;理论特征频率计算公式需要充分考虑滚子-滚道摩擦打滑与滚子-保持架兜孔碰撞效应的影响。  相似文献   

2.
针对群优化算法对变分模态分解所需模态数和二次惩罚项参数寻优效率较低的问题,提出了快速局部均值经验模态分解的信号预处理方法.对预处理后的模态分量根据相似系数准则进行模态数预估,同时利用多评价指标选择二次惩罚参数.针对VMD对故障信号中存在的固有振动高频带分解效果较差的问题,利用自相关能量函数实现降噪和减小高频带的影响.通过仿真实验和实测轴承故障数据分析,并与群优化算法选择参数以及中心频率相近选取模态数的VMD分解效果相比,该方法能有效提取故障信号的特征频率.   相似文献   

3.
为解决变分模态分解(VMD)在行星齿轮箱故障特征频率提取过程出现的鲁棒性低及分解个数不确定的问题,提出一种基于最小熵反褶积(MED)和自适应变分模态分解(AVMD)的齿轮箱故障诊断方法.首先通过MED对信号进行降噪,突出故障信号特征;采用瞬时频率的新定义及变差概念,自适应选择VMD的级数;使用VMD方法将行星齿轮箱的断齿故障信号分解为若干个本征模态函数(IMF)分量;根据相关系数分析选取带有故障信号的IMF分量,对其进行包络谱分析,以提取故障特征频率.仿真信号和试验信号分析结果表明,使用MED去噪后信号的峰值信噪比提高了10%,解决了传统VMD个数经验选择出现的误差问题从而实现此过程自适应化,解决了VMD在强噪声下针对非线性非平稳信号鲁棒性低的问题,准确提取了风电齿轮箱的故障特征频率.  相似文献   

4.
针对传统轴承故障预警实时性较差、故障特征提取准确性影响预警效果的问题,将语音端点识别思想进行迁移,采用谱熵梅尔积特征的双门限法实时追踪故障起始点.为克服变分模态分解(variational mode decomposition,VMD)参数选取不当和端点效应对提取效果造成的影响,提出能量差网格搜索法对VMD进行参数寻优,并用支持向量回归机对端点效应进行抑制,结合多尺度加权排列熵在检测振动信号随机性方面的优势,充分发挥VMD对信号的重构能力,对起始点后的故障段进行特征捕捉.通过实际轴承故障信号的实验及数据分析,验证了该方法在轴承故障预警中的有效性.   相似文献   

5.
构建考虑轴箱表面散热及轴承内部传热的功率损耗模型,分析轴箱轴承在不同服役环境下的载荷;综合考虑轴箱表面空气流场对流换热的影响,建立精细化轴箱轴承温度模型,分析不同服役环境对轴箱轴承温度分布和温度特性的影响,并通过轴承试验台验证模型的有效性。研究结果表明:当车辆速度由220 km/h增至300 km/h时,轴承的总摩擦力矩增大11.4%;当车轮多边形阶数由16阶增加到22阶时,摩擦力矩平均增大2.8%;轴箱轴承最高温度出现在内圈与滚动体接触的区域,最低温度出现在轴上且接近环境温度;当车速由220 km/h增加到300 km/h时,轴承的最高温度上升9.2℃,各节点处温度均有一定程度增加,当车轮多边形阶数由16阶增加到22阶时,最高温度平均升高1.1%;当多边形深度幅值由10 dB增加到18 dB时,最高温度平均升高1.4%。  相似文献   

6.
针对滚动轴承故障特征信号因受传输路径和强噪声的干扰而导致周期性故障脉冲难以提取以及最大相关峭度解卷积(MCKD)参数依赖人为经验选择的问题,提出一种参数自适应MCKD的滚动轴承故障特征提取方法。以解卷积信号的包络谱熵作为适应度函数,利用麻雀搜索算法强大的全局搜索能力自适应地选择MKCD方法的最佳参数组合;利用参数优化后的MCKD方法对故障信号进行解卷积运算,滤除掉信号中的噪声,以突显由轴承故障激发的周期性故障脉冲;对解卷积信号进行包络解调,以提取出轴承故障特征频率成分。仿真结果表明,与遗传算法和粒子群算法相比,采用麻雀搜索算法可使MCKD参数在优化中具有更快的收敛速度和更强的稳定性。对滚动轴承进行全寿命周期实验及对工程案例的实验结果表明:所提方法能自适应提取强噪声中的轴承周期性故障脉冲成分,信号的峭度提高了3倍,鲁棒性更强;与直接谱分析和快速谱峭度方法相比,所提方法能完整提取信号中的故障特征频率成分,成功率可达100%,有效提高了滚动轴承的故障诊断精度。  相似文献   

7.
针对滚动轴承早期故障信号微弱导致分类识别率低的问题,提出利用复合多尺度模糊熵作为适应度函数的粒子群算法优化变分模态分解,得到多个本征模态分量;利用快速谱峭度图选择最优的本征模态分量,并组成特征向量;将特征向量输入SSA-SVM中进行故障分类。实验结果表明基于复合多尺度模糊熵的PSO-VMD和SSA-SVM的滚动轴承故障诊断更能有效地识别出滚动轴承的早期故障。  相似文献   

8.
针对消毒机器人电机转子故障振动信号的非平稳性,以及常用时频分析技术无法全面获取信号特征的问题,提出一种基于改进变分模态分解(VMD)对称镜面图与模糊神经网络的故障诊断方法.采用VMD分解转子振动信号,给出分解过程中关键参数的选取方法;根据综合评价因子法选取对信号特征敏感的固有模态函数(IMF),重构信号;采用对称极坐标法,将重构信号转化为镜面对称图,通过灰度共生矩阵提取图像特征以形成状态特征向量,输入模糊神经网络,实现转子故障诊断.对比实测信号及常见信号分析方法可知,提出的方法具有更准确的信号特征提取能力.  相似文献   

9.
针对RV减速器内部构造复杂、采集到的振动信号受噪声影响严重及低频故障特征难以提取的问题,提出一种基于小波降噪结合变分模态分解(Variational Modal Decomposition, VMD)的故障诊断方法。首先利用小波降噪法对含噪声的振动信号进行降噪;再通过变分模态分解得到不同频率范围的模态分量(Intrinsic Mode Function, IMF),计算各目标分量的峭度值和信噪比,选出目标分量并进行快速傅里叶变换(Fast Fourier Transform, FFT);最后通过减速器模数确定特征频率,可以准确定位RV减速器的故障点。结果表明:该方法较传统的频谱分析可以更有效地提取故障信息,解决了噪声干扰、低频信号调制等问题。  相似文献   

10.
针对滚动轴承故障信号的自适应提取和分解的问题,提出一种基于乌鸦搜索算法优化变分模态分解的滚动轴承故障诊断方法。将变分模态分解(variational mode decomposition, VMD)方法的关键参数K和α采用新型的乌鸦搜索算法(crow search algorithm, CSA)进行优化,得到最优参数组合;再将最优参数组合输入到变分模态分解算法中,对故障信号进行分解从而得到多个本征模态分量(intrinsic mode function, IMF);以样本熵值为适应度函数挑选最优分量,对最优分量进行包络解调,分析其包络谱判断出轴承的故障类型。结果表明,提出的方法在兼顾全局搜索和局部搜索的同时也能将复杂的轴承故障信号准确地进行分解,提取出最优分量进行分析从而判断出轴承故障类型。  相似文献   

11.
极小样本下高速列车轴承的可靠性评估   总被引:1,自引:0,他引:1  
针对高速列车轴承在极小样本零失效情况下的可靠性试验评估问题,采用Bayes数据统计理论将先验信息与试验信息进行融合,建立累积失效概率数学模型,根据最小二乘法求解出二参数威布尔分布中的待定参数,得出高速列车轴承可靠性数学模型.研究结果为评估高速列车轴承的可靠性和运行安全性提供了一定的理论依据.  相似文献   

12.
针对强背景噪声下非高斯脉冲噪声和高斯噪声对滚动轴承故障诊断产生严重干扰的问题,提出了一种基于改进变分模态分解(variational mode decomposition, VMD)并与循环相关熵谱(cyclic correntropy spectrum, CCES)相结合的故障诊断方法。首先,针对VMD传统重构指标易受噪声影响的问题,引入相关熵峭度(correlation entropy kurtosis index, CEK)指标对VMD分解后的模态分量进行选择与重构,去除高斯噪声;然后针对重构后信号仍存在的脉冲噪声影响问题,对重构信号进行CCES投影融合去除非高斯脉冲噪声干扰并增强特征;最后对融合结果进行分析与故障诊断。经仿真测试与实验表明,所提出的方法可以在高斯噪声和非高斯脉冲噪声背景下有效提取滚动轴承故障特征频率并实现故障诊断。  相似文献   

13.
针对轴承振动信号的非线性与非平稳性,采用经验模态分解与RBF神经网络相结合的故障诊断方法.首先,采用经验模态分解法对轴承信号进行分解得到各个固有模态函数,提取各个固有模态函数的能量作为故障特征参量,然后将故障特征参量输入RBF神经网络进行训练与测试,实现了智能化的故障模式识别.结果表明,基于该方法的轴承故障诊断系统能够准确地识别外圈裂纹、内圈点蚀和保持架断裂等故障,具有较好的实际工程应用价值.  相似文献   

14.
曹兴 《科技资讯》2010,(24):35-35
滚动轴承是机械设备中最常见的零部件,其运行状态直接影响到整台机器的功能。本文通过时域参数指标对轴承故障进行诊断。  相似文献   

15.
为解决变分模态分解方法在提取齿轮箱滚动轴承的故障特征频率时受模态个数和惩罚项系数影响的问题,提出了一种基于人工鱼群算法优化变分模态分解的轴承故障诊断方法.首先,利用人工鱼群算法优化变分模态分解方法的模态个数和惩罚项系数;其次,故障振动信号经优化的变分模态分解方法分解,获得若干模态分量;最后,筛选包络熵值最小的分量进行包...  相似文献   

16.
提出一种基于变分模态分解(VMD)与归一化峭度的钢管混凝土柱内部脱空缺陷识别方法.首先,采用VMD分解响应信号;然后,选取加权峭度值大于平均值的模态分量作为有效分量并进行信号重构;对重构后的信号求取Teager能量算子(TEO)并进行快速傅里叶变换(FFT);最后,对经FFT处理的TEO值进行归一化峭度求解.通过数值算例和动力试验对文中方法的有效性和准确性进行验证.研究结果表明:文中方法对钢管混凝土柱内部损伤位置的识别效果较好,且不依赖于原始未损工况的基准信息.  相似文献   

17.
为了有效识别环状直流配电网中的故障,提高直流配电网保护的可靠性、选择性、速动性和灵敏性,保证系统的稳定运行,提出一种利用改进变分模态分解(VMD)突变能量的线路纵联保护方法。因为VMD算法需要先设置模态数,且模态数与分解效果息息相关,所以首先利用麻雀搜索算法(SSA)找到VMD算法合适的模态数,使得在此参数下的分解效果最优。然后根据线路首末两端突变能量的差异,构造保护方案。将故障时采集的电压、电流故障分量进行SSA-VMD分解,得到若干模态分量并计算其突变能量。根据区内、区外的突变能量大小差异构造区内、外故障判据,由故障时正负极的突变能量比值差异构造故障极判据。在PSCAD/EMTDC中搭建环状直流配电网模型,利用MATLAB进行保护方法验证,结果表明:在不同故障类型下,所提方法均可在3 ms内快速可靠动作;可以识别区内外故障并实现故障选极,保护线路全长;可耐受过渡电阻20Ω,耐受过渡电阻能力强;在40 dB噪声情况下,依旧可以识别故障,有一定的抗干扰能力。  相似文献   

18.
针对非连续、非平稳语音信号中含有噪声的问题,提出一种基于参数优化的变分模态分解去噪算法.首先,利用灰狼优化算法搜寻变分模态分解算法的最优分解参数组合分解模态数K和惩罚因子α,通过使用获得的参数组合分解语音信号以获得K个特征模态函数分量IM F;其次,利用相关系数选择有效模态分量,并用小波阈值处理无效模态分量;最后,重构...  相似文献   

19.
自适应Chirplet快速变换在轴承故障诊断中的应用   总被引:1,自引:0,他引:1  
在故障诊断中,针对当前各种时频分析方法存在的问题,作者提出一种基于自适应Chirplet变换的故障诊断方法.该方法在参数粗搜索的基础上,将多维参数的最优化过程转化为传统的曲线拟合问题,不仅解决了交叉干扰项和时频分辨率之间的冲突,而且还具有计算量小、运算速度快和参数估计精度高等优点.实验结果表明,该算法能够有效地提取故障轴承振动信号的时频特征,其诊断效果明显优于其他时频分析方法,因此,是一种有效的故障诊断方法.  相似文献   

20.
针对复杂工况下轴承载荷的时变非平稳性,文章提出一种基于天牛须搜索(beetle antennae search, BAS)算法优化堆栈稀疏自编码器的轴承故障诊断方法,以解决复杂工况下难以快速准确判断轴承故障类型的问题。首先,通过对轴承振动信号进行时域、频域特征提取和变分模态分解,得到其固有模态函数,提取其时域、频域和固有模态函数的44个特征构建数据集,作为机器学习诊断网络的输入;其次,通过稀疏自编码器二次特征提取获得更加典型的特征,同时引入BAS算法对堆栈稀疏自编码器的稀疏惩罚因子进行自适应选取以获得最优分类模型;最后,通过Softmax分类层实现对滚动轴承的故障诊断分类。试验结果表明,该方法不仅在平稳载荷下具有很好的轴承故障分类能力,而且在时变非平稳性载荷以及不同测试数据量下仍然具有较好的故障分类效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号