首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文本图像二值化算法的优劣直接影响图像文本字符识别的准确率。秦简文字图像受制于背景光照欠均衡和噪声复杂等因素影响,传统文本图像二值化算法无法准确分割其前景和背景,秦简文字轮廓等特征无法准确提取,二值化效果达不到文本高准确识别要求。针对图像质量不平衡的秦简文字图像提出了一种基于图像信噪比自适应阈值模型的二值化算法。首先,将图像进行灰度转换、调整亮度和降噪等一系列二值化前的预先处理;其次,根据图像信噪比(SNR)大小自适应设置阈值,分别采用OTSU算法和Bernsen算法进行二值化处理;最后,由峰值信噪比(PSNR)与结构相似性(SSIM)评价指标择优选取二值化图像,从而准确地提取秦简图像二值化后的文字轮廓。在自建的秦简文字数据集QBS text dataset上的测试结果表明,该算法的二值化结果保留了更多的秦简文字细节特征和文字轮廓,其峰值信噪比和精确率也分别达到25.61 dB和76.67%,相较其他经典文本图像二值化算法,其性能指标均有较大提升。  相似文献   

2.
为了有效解决类间相似度高、类内差异化大、数据类别不平衡的皮肤病变识别,提出了基于改进AlexNet的可变形卷积网络皮肤病变识别算法. 构建改进的AlexNet可变形卷积网络模型,增加采样偏移量,使不同位置的卷积核采样点可根据图像内容自适应变化,自动调整不同尺度或感受野,提取比标准卷积更精细的特征. 使用交叉熵损失函数和焦点损失函数的加权损失函数,削弱易分类样本在训练中所占的权重,使模型专注于相似度高、易错分的样本,解决样本比例不平衡的问题,优化模型的识别率. 在HAM10000数据集上进行仿真实验,主客观的实验结果表明, 提出的方法在7种皮肤病变上的识别优于现有方法,具有更高的准确性、特异性和鲁棒性.   相似文献   

3.
Caffe是目前广泛应用于计算机视觉处理的深度学习框架之一,支持卷积神经网络的模型训练与预测。本文利用caffe支持的AlexNet卷积神经网络分别基于加载与不加载基础模型两种模式对五类动物图片进行分类学习与训练,发现加载基础模型的网络模型收敛耗时仅2.77 s,测试集准确率接近100%,实用测试准确率达到99%,且训练与测试损失曲线高度重合,但另一模式的网络模型收敛耗时多达68.89 s,测试集准确率仅为95%,实用测试准确率仅94%,且训练与测试损失曲线存在严重分化。图像分类不仅可以对不同物类的图像进行准确分类,同样可以对不同属性、状态或特性的图像进行准确分类。  相似文献   

4.
针对铁路维护采用人工巡查方式存在准确率不足、效率低下等问题,提出一种基于轻量化AlexNet网络的轨道缺陷识别方法。该方法主要包括融入注意力机制、裁剪全连接层、引入批量归一化取代原有的局部响应归一化等。实验对比验证结果表明,改进后的网络具有更好的识别效果,模型的准确率提高了2.8个百分点,推理速度和稳定性都得到相应提升。  相似文献   

5.
针对佤语语谱图的识别无需考虑清、浊音的影响这一特征.利用傅里叶变换将佤语转换为对应的语谱图信息,将深度卷积神经网络的AlexNet模型用于佤语语谱图识别.实验表明,语谱图识别可以有效解决语音识别过程中清、浊音对实验识别结果的干扰,实验准确率达到96%.  相似文献   

6.
乳腺癌是女性中最常见的癌症类型,如果能在乳腺癌的早期确诊和治疗,可以显著提高患者生存率.组织病理学检查是癌症确诊的黄金标准,针对医生很难在乳腺癌病理组织切片上精确快速的描绘出患病区域,给出一种基于改进AlexNet和注意力机制的网络模型用于IDC的自动检测,首先将全视野数字病理切片按照坐标信息进行不重复切片,然后将小切...  相似文献   

7.
针对传统卫星遥感难以获取相应的高空间分辨率数据,影响农作物的分类准确度的问题,提出一种基于改进AlexNet网络的无人机遥感图像分类方法.首先,为降低方法的复杂度,加快收敛效果,优化改善AlexNet网络模型,仅保留AlexNet网络模型的前5个图像处理卷积层;其次,对试验农作物无人机遥感图像进行光谱特性分析,提取各类作物自身的光谱曲线.在此基础上,考虑到农作物在可见光波段的反射率相近,很难依据反射率曲线进行区分,基于改进AlexNet网络的深层卷积结构,依据不同波段内的像素亮度对农作物进行准确分类.最后,利用湖南省长沙市农业科学研究所试验基地实测数据进行算例试验.结果表明:在相同的试验条件下,与SVM-RFE和SVM-SS相比,所提方法对于农作物的总体分类精度均值提升了3.91%以上,Kappa系数均值至少提升了2.20%,可适用于实际场景.  相似文献   

8.
彝文文字识别中的文字切分算法设计与实现   总被引:2,自引:0,他引:2  
针对目前国内OCR及其文字切分技术主要应用于汉字、英文等文字的识别,而对于少数民族文字,则缺乏较为实用的文字切分工具的问题,提出了基于少数民族文字识别的文字切分方法.该方法以彝文文字为例进行切分,经实验证明该方法具有较好的切分效果.  相似文献   

9.
基于迁移学习和AlexNet的驾驶员行为状态识别方法   总被引:1,自引:0,他引:1  
为了解决传统基于神经网络算法的驾驶员行为状态识别系统精度过于依赖大量训练样本的问题,本文提出将迁移学习理论和AlexNet引入到驾驶员行为状态的识别研究中。首先对驾驶员行为特征及状态进行深入分析,对驾驶员7种驾驶状态进行了定义,构建了驾驶员状态信息采集系统;然后对基于卷积神经网络的驾驶员状态识别方法研究,建立了驾驶员状态数据集,构建了基于AlexNet卷积神经网络的状态监测系统,通过迁移学习完成了卷积神经网络识别模型。最后通过实验验证了本文提出的驾驶员状态识别算法对7种驾驶员状态识别的有效性。实验表明:该系统准确率达到97.8%,且在实验设备中运行速度达到70帧/分钟,满足较高的准确率要求与实时性要求。  相似文献   

10.
在信息化和智能化高度发展的大数据时代,身份信息安全面临着种种挑战,传统的身份识别技术已不能满足公众安全需求。为解决传统唇纹识别算法中图像预处理过程复杂、特征提取困难和识别周期较长等问题,提出基于卷积神经网络的唇纹识别算法,搭建一个轻量型神经网络LNet-6(lightweight network-6)。该网络模型具有参数计算量少、模型文件小和可移植性强等优势。直接输入原始数据集,简化图像预处理步骤,通过卷积层自动提取特征信息和下采样操作降低模型训练参数,避免了图像特征提取算法的复杂设计。在测试集上获得了97.97%的识别率,验证了该方法的有效性。  相似文献   

11.
针对当前图像文字识别与提取的最新发展状况,提出一种基于K-means的图像文字识别与提取算法,其主要处理步骤包括图像的预处理、像素点聚类处理、图层的选择与优化以及最终的文字切分等。经过上机对算法进行测试,该算法能够有效提高图像文字识别与提取的准确率与执行效率,并可以针对不同环境下的图片文字进行有效识别。  相似文献   

12.
13.
手写体识别有着广阔的应用前景和很高的理论价值,其主要分为在线识别和离线识别两种.在分析局部线性嵌入算法LLE和文字识别过程的基础上,实现了整个手写文字识别过程,包括图像获取、预处理、特征提取、分类、LLE降维、识别输出等过程.通过文字的相容度试验,确定了本过程的有效性.  相似文献   

14.
针对传统病虫害图像识别方法流程繁琐、效果差和应用困难等问题,本文以番茄、玉米、马铃薯3类作物17种叶部病虫害图片为研究对象,通过改进MobileNetV3网络模型并部署到移动端,实现了对多种作物病虫害图像的有效分类。首先,对病虫害图像做随机裁剪、旋转等预处理操作,对不均衡样本进行数据扩充;然后,将MobileNetV3网络从ImageNet数据集上学习获得的先验知识通过迁移学习策略应用到病虫害数据集上,经过参数微调并采用RAdam优化器训练后得到改进的轻量级网络模型;最后,将该模型通过Android Studio开发软件移植到安卓手机端。实验结果表明,该模型具有精度高、占用内存小、识别速度快等优势,能够满足对农作物叶片病虫害检测的基本要求,对智慧农业的发展具有参考意义。  相似文献   

15.
颈椎间盘突出在人群特别是老年人群中非常普遍,且具有多种类型,对其进行快速、有效且准确的识别并能检测其类型,具有重要意义.构建基于深度学习的颈椎间盘突出识别方法,其核心思想在于:在大量采集各种类型颈椎间盘突出患者颈部MR I影像样本的基础上,将样本分为膨出型、突出型、未患病三类,通过筛选、截取、归一化、扩增处理等操作,构...  相似文献   

16.
OCR(Optical Character Recognition,光学字符识别),是属于图型识别(Pattern Recogni-tion,PR)的一门学问。其目的就是要让计算机知道它到底看到了什么,尤其是文字资料。书写文字识别是人工智能理论在这一领域应用的一个分支,它研究的对象是如何利用电子计算机自动辨认人书写在纸张上的文字。文章主要是对模式识别的基本原理以及如何利用图像识别技术对书写文字的识别的研究,并给出了模板匹配法识别图像的原理。  相似文献   

17.
中国非物质文化遗产水书文化面临失传威胁,近年大量深度学习的方法用于手写古籍文字的识别.但水书古籍文字识别面临数据集建立和标注困难、样本不平衡等问题,研究进展不大,且鲜少进行水书古籍页面级的文字检测与识别.首先建立了一个较大规模的水书手写文字数据集,通过几种数据扩增方式,获得包含80个文字类别,共110610个带标签的字...  相似文献   

18.
针对柴油机缸盖振动信号非线性、非平稳的特点,以及传统故障诊断方法需要先验知识且特征提取费时费力的缺点,提出了一种基于复Morlet变换和改进AlexNet神经网络的柴油机气门间隙异常故障诊断方法。首先通过复Morlet小波将柴油机缸盖振动信号转换为时频图,该变换包含了信号的时频域信息,比单一的时域或频域信号更适合分析柴油机缸盖振动这种非平稳信号;其次将时频图输入至AlexNet神经网络进行特征自动提取并建立故障诊断模型,解决了传统手工提取特征费时费力且需要专家经验的问题;然后通过Batch Normalization和Dropout技术改进网络结构,并优化神经网络超参数以提高模型的准确度和计算效率;最后将本文方法与传统的故障诊断方法应用于柴油机气门间隙异常故障诊断并进行对比,发现其诊断准确率最高,验证了所提方法的优越性。  相似文献   

19.
场景文字识别的一个具有挑战性的方面是处理具有扭曲或不规则布局的文字.尤其是侧视文字和曲线文字在自然场景中较为常见,且难以识别.本文提出了一个带有灵活矫正功能的注意力增强网络,将其用于任意形状场景文字识别.此网络由基于卷积神经网络的文字矫正网络和基于注意力增强的识别网络两部分组成.矫正网络自适应地将输入图像中的文字进行矫正,降低识别难度,使基于注意力增强的序列识别网络直接根据矫正后的图像预测字符序列.整个模型可以进行端到端的训练,训练只需要图像和相应的文字真实标签.在各种公开数据集上进行了广泛的实验,包括SVT、ICDAR 2003和CUTE80等数据集,验证了此网络具有优异的性能.  相似文献   

20.
现有蒙古文文字存在元样本尺寸较小、使用标准VGG-Net进行字元识别不能达到较好效果的问题,提出基于改进VGG-Net的蒙古文字元识别方法.通过改进的VGG-Net模型对手写蒙古文字元图像数据增强后的23类手写蒙古文字元样本进行识别.结果表明,改进的VGG-Net对字元图像识别的准确率达到96.83%,相比传统VGG-...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号