首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究重载顶推装备滑动副的摩擦磨损性能,提出一种可以模拟重载顶推装备顶推过程的试验台,研究以聚四氟乙烯(PTFE)/丙烯腈-丁二烯-苯乙烯(ABS)/二硫化钼(MoS2)复合材料和0Cr18Ni9不锈钢组成的滑动副在不同载荷且无润滑工况下,摩擦因数变化趋势并揭示摩擦副的磨损机理。利用扫描电子显微镜(SEM)和能谱仪(EDS)对滑动副磨损后的表面微观形貌和化学成分进行分析。研究结果表明:随着滑动次数的增加,滑动副摩擦因数呈先增大后减小,最后趋于稳定的变化趋势。重载下滑动副摩擦因数初始值高于轻载下摩擦因数,但最终稳定值低于轻载下摩擦因数。轻载下主要磨损机制表现为磨粒磨损和黏着磨损;而重载下主要磨损机制表现为黏着磨损和疲劳磨损。  相似文献   

2.
采用爆炸喷涂技术制备了碳化钨涂层,利用HT-1000高温摩擦磨损试验机研究了碳化钨涂层高温下摩擦磨损性能,通过扫描电子显微镜和X射线衍射分析了涂层磨损表面形貌、元素分布和相结构.结果表明:碳化钨涂层由雪花片状颗粒堆叠而成,如山地状,结合紧密.定温条件下,摩擦因数随着试验温度升高而减小,试验温度为550℃时,摩擦因数最小;磨损量随着温度升高而增大,550℃时,磨损量由于配副材料的转移出现了负增加.温度低于350℃时,磨损表面具有撕裂、轻微黏着和磨粒磨损痕迹;在550℃时,磨损表面发生了剥落、严重黏着和氧化磨损.连续升温条件下,温度低于300℃时,摩擦因数较小,在350~550℃范围内,摩擦因数波动较大;磨损表面以剥层、黏着和氧化磨损为主.  相似文献   

3.
高铝铜合金激光熔敷层高载荷干摩擦下的摩擦磨损特性   总被引:1,自引:0,他引:1  
采用激光熔覆技术在45#钢基体上制备高铝铜合金涂层,对涂层进行较高载荷下的干摩擦磨损实验研究,测定不同载荷下涂层的摩擦系数,观察涂层的磨损形貌,测量涂层不同载荷下的磨损失重量,探讨涂层的磨损机理。结果表明:随外加载荷的增加,激光熔覆层的摩擦因数变化很小,其值在0.65~0.83,具有很好的摩擦稳定性,磨损量随载荷的增加逐渐增大,但不同载荷下涂层的磨损机理不同,在100N的较低载荷下,涂层以磨粒磨损和刮擦磨损为主,随载荷增加到200、300N时,磨损失重的主要原因是切削磨损和磨粒磨损,当载荷超过400N时,涂层的磨损形式则以磨粒磨损、粘着磨损和剥落磨损的复合磨损形式体现.  相似文献   

4.
为研究液体火箭发动机密封材料——铜基石墨材料的摩擦磨损规律,采用销盘试验考察了铜基石墨材料在干摩擦和水润滑条件下的摩擦磨损性能和磨损机理,探讨了速度、载荷、摩擦温升对材料摩擦磨损性能的影响,结果表明:水润滑条件下不易形成铜基石墨转移膜,所以水润滑时的摩擦因数比干摩擦时的摩擦因数大;水润滑下,磨损机理为黏着和磨粒磨损,适当增加载荷、降低速度有利于降低铜基石墨材料的磨损率;干摩擦下,磨损机理为黏着磨损,适当降低载荷、提高速度有利于降低铜基石墨材料的磨损率。  相似文献   

5.
以WC-(5,7,9)Ni硬质合金与SiC陶瓷材料为摩擦副,在MMU-10型屏显式材料端面摩擦磨损试验机上,研究该摩擦副材料在干摩擦条件下,不同压强、不同滑动速度时的摩擦磨损行为,利用扫描电子显微镜观察磨损后的表面形貌.结果表明:当压强一定时,随着滑动速度的增加,WC-Ni/SiC摩擦副的摩擦因数逐渐下降,并趋于平稳;当滑动速度一定时,随着试验压强P的增加,摩擦因数逐渐减小;摩擦因数还随合金中Ni含量的增加而增大;硬质合金的磨损量随材料的硬度降低而增大;当滑动速度0.95 m/s时,摩擦副材料的磨损机制与合金成分和试验压强P有关,当p=0.015 MPa时,WC-5Ni/SiC为粘着磨损,WC-7Ni/SiC和WC-9Ni/SiC表现为粘着和磨粒磨损综合作用机制;当p=0.60 MPa时,3种摩擦副的磨损机制主要是磨粒磨损.  相似文献   

6.
为了探讨离合器摩擦副材料在高温下的摩擦磨损机制,采用30CrSiMoVM钢作为与铜基粉末冶金摩擦片配对使用的对偶钢片,在MMU-10G高温端面摩擦磨损试验机上,研究30CrSiMoVM钢和摩擦片组成的摩擦副在室温到600℃之间的摩擦磨损性能。研究结果表明:随着温度升高,材料的强度逐渐降低,摩擦界面氧化膜不断形成与脱落,使摩擦副摩擦因数和磨损量总体趋势逐渐增大。在温度为300~500℃时,摩擦副摩擦因数和磨损量均平稳增大,表明摩擦副材料在此温度段摩擦磨损性能较稳定,磨损机制表现为磨粒磨损、氧化磨损和疲劳磨损;在600℃时,摩擦副材料表层软化,摩擦片摩擦因数和磨损量急剧增大,对偶钢片因表层黏着磨损严重,相对磨损量较小,磨损机制表现为黏着磨损、氧化磨损和疲劳磨损。  相似文献   

7.
三维网络SiC陶瓷/金属复合材料摩擦性能的研究   总被引:2,自引:1,他引:1  
以三维网络SiC陶瓷/Fe-Cu合金复合材料作为静片、三维网络SiC陶瓷/40Cr复合材料作为动片,研究了法向载荷、摩擦时间和pv值对该材料体系摩擦因数的影响以及摩擦次数对静片磨损量的影响,并采用金相显微镜观察了复合材料的显微结构和磨损表面形貌,分析了材料的摩擦磨损性能和磨损机理.结果表明:该摩擦副的稳定摩擦因数在0.33~0.35之间,摩擦过程中材料的磨损机理以磨粒磨损和粘着磨损为主,材料表面摩擦形成的氧化层硬度较高,是该材料耐磨性能优良的主要原因.  相似文献   

8.
钛合金是航空航天、军工、生物等领域重要使用材料之一,但其摩擦磨损性能较差,限制了其在摩擦工况下的应用。对比测试了TC29钛合金在不同摩擦配副和摩擦参数下的摩擦磨损性能。研究结果表明:与GCr15钢对磨时,TC29钛合金的摩擦磨损程度明显高于其与TC29钛合金对磨时的摩擦磨损程度;与GCr15钢对磨时,TC29钛合金的主要磨损机制为磨粒磨损和剥层磨损,与TC29钛合金对磨时,其主要磨损机制为黏着磨损;载荷和对磨转速的增加均会加剧TC29钛合金的摩擦磨损,但具体摩擦磨损的程度受摩擦配副情况及相应的磨损机制的影响。  相似文献   

9.
为探索铜/石墨载流摩擦副的安全服役环境,研究了不同湿度大气环境中石墨/紫铜配副的载流摩擦磨损性能.利用扫描电子显微镜、能谱和光学显微镜分析了磨损表面.研究结果表明:随着相对湿度从0%增加至80%,载流摩擦因数和接触电阻在30%湿度条件下达到最大值,然后呈下降趋势;石墨磨损量从0.2 mg增加至1.1 mg;铜盘磨损表面...  相似文献   

10.
不同压力下Ti3SiC2陶瓷的干摩擦磨损性能研究   总被引:2,自引:0,他引:2  
采用反应烧结技术制备了Ti3SiC2陶瓷.利用环盘摩擦磨损试验机,研究了压力(载荷)对反应烧结Ti3SiC2陶瓷的干摩擦磨损性能的影响.试验在环盘摩擦试验机上进行,以低碳钢为对摩体,温度为25℃,相对湿度为23%~25%,滑动时间为0.5 h,滑动速度为0.5 m/s,法向压力为20~60 N.试验结果表明:随着压力的增大,Ti3SiC2陶瓷的干摩擦因数和磨损率均呈现先增加后降低趋势,干摩擦因数正压力为30 N时最大,而磨损量则在压力为40 N时最大.利用扫描电镜分析了压力对Ti3SiC2陶瓷的干摩擦磨损性能的影响,探讨了其摩擦磨损机理:当压力较小时,磨损以磨损表面发生流变和Ti3SiC2粒子脱落造成的磨粒磨损为主;当压力超过40 N时,则以氧化膜的轻微划痕和轻微黏着磨损为主.  相似文献   

11.
天然海水润滑下不锈钢316L与PEEK450CA30的摩擦磨损性能   总被引:1,自引:0,他引:1  
为了寻找适合于低速大扭矩水液压马达配对副的材料,采用MMU-5G屏显式高温材料端面摩擦磨损试验机考察不同转速、不同载荷下,摩擦副316L-PEEK450CA30在海水中的摩擦磨损性能,并借助OLYMPUS-SZX体式显微镜对试样的磨损表面进行形貌观察。结果表明:在转速和载荷比较低的情况下,摩擦副316L-PEEK450CA30的摩擦系数较小,磨损性能较好;当转速或载荷增大时,摩擦副的摩擦系数和接触面的磨损情况会急剧增大。在转速300r/min、载荷100N和转速100r/min、载荷300N的情况下,摩擦副316L-PEEK450CA30还会发生轻微的黏着磨损。最后得出,当转速为100r/mim、载荷为100N时,对偶副间的摩擦系数最小,耐磨损程度最好,适合作为低速大扭矩水液压马达的对偶副材料。  相似文献   

12.
摩擦条件对摩擦材料表面第三体的连续性产生重要影响,进而影响材料的摩擦磨损性能.选用两种轨道车辆用低合金制动盘材料与铜基粉末冶金材料为配对摩擦副,在不同速度、压力条件下进行摩擦试验,观察第三体的形成过程中,表面形貌的变化规律及磨损机理.结果表明:在特定的摩擦条件下,第三体的显微硬度可达800~900HV,远高于基体材料的硬度;连续、致密的第三体,使材料具有最低的磨损率;当摩擦转速和压力过低时,磨粒磨损为主要磨损形式,当摩擦转速和压力过高时,黏着磨损将成为主导;在第三体的形成破坏过程中,摩擦速度、压力过低或过高均可能使第三体的破坏速度大于形成速度,使材料的磨损率增大.  相似文献   

13.
为研究刷镀电压对镍镀层摩擦磨损性能的影响,分别在不同刷镀电压下,采用快速镍刷镀方法在45~#钢表面制备工作层.在球-盘摩擦磨损试验机上,以Cr12钢球为摩擦配副进行油润滑条件下的摩擦磨损试验,通过磨损失重、油液的光谱和铁谱分析、摩擦系数、磨损表面形貌研究了不同镍镀层的摩擦磨损性能.结果表明:不同刷镀电压下制备的镍镀层的摩擦磨损性能存在较大差异.刷镀电压过低(8V)或过高(22V)时,镍镀层耐磨性能均下降;当刷镀电压为14V时,镍镀层的摩擦磨损性能最佳;镍镀层磨损机制以磨粒磨损和黏着磨损为主.  相似文献   

14.
采用SEM和XRD分析Ni Al-2.5Ta-7.5Cr合金的微观组织,用万能力学试验机测试合金的力学性能,用高速往复摩擦磨损试验机研究合金的室温摩擦磨损特性。研究结果表明:Ni Al-2.5Ta-7.5Cr合金由Ni Al相、Ni Al-Cr共晶和Cr2Ta相组成,其强度和塑性良好。在低P1/2·v(P为载荷,v为速度)下,合金的磨损机制为磨粒磨损,随着P1/2·v的增加,摩擦热效应增强,合金的磨损机制逐渐转变为黏着磨损,摩擦因数和磨损率增加;当P1/2·v0.54N1/2·m/s时,摩擦热效应逐渐导致摩擦表面形成了无定形层,无定形层具有自修复特性,部分或全部隔离了摩擦副的直接接触,磨损机制逐渐转变为氧化磨损,磨损率快速降低后保持稳定,摩擦因数逐渐降低;当P1/2·v≥4.02N1/2·m/s时,合金磨损表面开始出现疲劳磨损特征,表面剥落导致合金的磨损率升高。  相似文献   

15.
等离子喷涂Ni60A/MoS_2复合润滑涂层摩擦学特性研究   总被引:1,自引:2,他引:1  
在UMT-2微观磨损试验机上研究了等离子喷涂Ni60A/MoS2复合润滑涂层的摩擦学特性,且对摩擦表面进行了SEM观察和分析.研究结果表明:随着MoS2含量的增加,摩擦因数显现先减小后增大的趋势,并在MoS2的质量分数为40%时达到最小值.随着载荷的增加磨损量明显增大,当载荷由80 N变化到120 N时,载荷对磨损的影响较为显著,120 N时的磨损量大约为80 N时的1.7倍左右,载荷对摩擦因数也有较大的影响,等离子喷涂涂层的主要磨损失效形式为磨粒磨损和粘着磨损.  相似文献   

16.
以针刺整体炭毡为坯体,采用化学气相浸渗法(CVI)增密制备C/C多孔体,然后采用熔硅浸渗C/C多孔体制备C/C-SiC复合材料。在MM-1000摩擦磨损试验机上测试该材料在不同刹车速度下的摩擦磨损行为,分别用金相显微镜和扫描电子显微镜观察摩擦表面及磨屑形貌。结果表明:复合材料摩擦因数随刹车速度的增加先升高后降低最后趋于稳定;在速度为2 500 r/min时,摩擦因数达到0.52;磨损量随刹车速度的提高而降低,在速度为1 000 r/min时,线性磨损量为最大值21.3μm/(面·次);当刹车速度小于4 000 r/min时,摩擦磨损机理为很严重的磨粒磨损,当速度大于4 000 r/min时,摩擦磨损机理以粘着磨损和氧化磨损为主。  相似文献   

17.
以C/C复合材料/QCr0.5为摩擦副,在HST-100销盘式高速载流摩擦磨损试验机上进行载流摩擦磨损试验,采用单因素试验法,研究了电流、速度、载荷对C/C复合材料/QCr0.5摩擦副起弧率的影响,借助扫描电子显微镜和能谱仪观察摩擦表面形貌和元素分布。试验结果表明:随着电流和速度的增加,C/C复合材料/QCr0.5摩擦副的起弧率增加;载荷为70 N时起弧率最小;磨损形貌观察发现:起弧率较高情况下,磨损表面有大量的电弧侵蚀坑和转移铜。  相似文献   

18.
AZ91D镁合金的摩擦磨损行为及其机理探讨   总被引:4,自引:0,他引:4  
研究了传统铸造和触变成形AZ91D镁合金在干摩擦往复运动条件下与GCr15钢对磨时的摩擦磨损行为.研究结果表明,触变成形和传统铸造的平均摩擦系数都在0.26~0.36,前者比后者稍小.在较低载荷下,镁合金的磨损机制为氧化磨损和磨粒磨损,随着载荷的增大,磨损机制将完全以剥层磨损为主,甚至出现粘着磨损,并伴随向偶件材料表面的大量转移.  相似文献   

19.
采用超音速火焰喷涂法在H13钢表面制备WC-12Co涂层,通过扫描显微镜、X线衍射仪和能谱仪分析其表面-界面形貌、物相和化学元素组成。利用球/平面接触方式进行涂层高温磨损试验,通过扫描电镜和能谱仪分析磨痕形貌和化学元素的变化,讨论高温对涂层摩擦因数和磨损性能的影响。研究结果表明:涂层界面致密,与基材紧密结合;在600,700和800℃时涂层平均摩擦因数分别为0.395 5,0.327 1和0.266 4;600℃时涂层以黏着磨损为主,700℃时涂层以氧化磨损为主,并伴有磨粒磨损,800℃时涂层以严重的氧化磨损为主。  相似文献   

20.
以碳纤维针刺整体毡为增强体,采用化学气相渗透法(CVI)制备低密度的碳/碳多孔体,再分别采用反应熔体浸渗法(RMI)和先驱体浸渍裂解法(PIP)制备C/C-SiC复合材料。在MM-3000型摩擦磨损试验机上进行模拟飞机正常着陆能量条件下的刹车试验,研究两种制备工艺对C/C-SiC复合材料摩擦磨损性能的影响。研究结果表明:PIP工艺制备的C/C-SiC复合材料摩擦性能较优,其平均动摩擦因数为0.350,平均磨损率为3.500μm/(面·次);摩擦表面较完整、致密,磨屑为粗颗粒状,表现为磨粒磨损、黏着磨损、氧化磨损的共同作用。RMI工艺制备的C/C-SiC复合材料摩擦表面粗糙,未形成完整的摩擦膜,磨屑为细颗粒状,表现为磨粒磨损、疲劳磨损、黏着磨损、氧化磨损的共同作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号