首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于煤基炭膜设计了一种新型电控膜分离系统,在煤基炭膜电极上采用电控离子交换(ESIX)技术,使铅离子进行周期性的吸/脱附过程,并结合液路系统实现废液中低浓度铅离子的连续分离。实验中分别考察了膜电极施加电位、铅离子初始质量浓度、再生液pH值对炭膜铅离子分离效果的影响,进而评价膜电极的分离性能。实验结果表明:膜电极施加电位时,铅离子的吸、脱附效率与未施加电位时相比分别提高了2.2倍和2.3倍;随着膜电极吸附/脱附时所加电位分别增大至-0.5 V和1.1 V,铅离子的吸、脱附效率不断增大,且施加电位时,经炭膜处理后的溶液中铅离子质量浓度为0 mg/L,去除率为100%;随着铅离子初始质量浓度的增加,铅离子的吸附量不断增加;由再生实验可得,再生液pH=3时脱附效率高达99%.  相似文献   

2.
研究了pH=9.68的硼砂—NaOH缓冲底液中5′-磷酸尿苷酸(5′-UMP)在悬汞电极上的阴极溶出伏安行为,讨论了富集电势、富集时间对伏安曲线的影响及最佳测定条件,方法的检测下限为5×10~(-10)mol/L.  相似文献   

3.
研究了阳极液质量浓度为300g/L的条件下,阴极液的质量浓度分别为50,100,200,300,400g/L时,电解过程中阴极液pH和温度的不同变化以及不同Li2CO3产物的相组成和微观形态.实验结果表明:电解过程中的反应机理并不受浓度或浓度差的影响,但浓度差对反应进行的速率和限度存在较大影响;电解产物产量和电流效率随着浓度差减小或阴极液浓度升高而增大;电解得到的Li2CO3晶体为单斜晶系,浓度差使Li2CO3产品结晶程度升高,晶粒更细小.综合考虑,阴极液LiCl质量浓度为100g/L,即阳极液与阴极液质量浓度差为200g/L是较优的电解参数.  相似文献   

4.
为降低氯碱电解槽阴极析氢过电位,依据氢在电极上吸脱附原理,研究了Ni-Sn合金镀层作为阴极的析氢性能。实验证明,以Ni-Sn合金镀层作为阴极,在120g/lNaOH,190g/lNaCl溶液中,温度为90℃,电流密度为15Adm-2条件下电解,能降低氢超电势270?mV,是优良的析氢电催化电极。  相似文献   

5.
以铂碳电极为基础,研究了苯/水体系阴极电催化加氢反应的动力学基本规律,考察了反应温度、阴极电势等因素对苯加氢反应的影响.电解反应的结果表明:随着原料中苯蒸气质量分数的增加,苯加氢电流呈逐渐增加的趋势,当苯蒸气的质量分数增至25%左右时,苯加氢电流的上升趋势减缓;随着反应温度的升高,苯加氢电流持续增加,苯加氢反应的表观活化能为32.88 kJ/mol,析氢反应的表观活化能为18.08 kJ/mol;随着阴极电势的增加,加氢电流在-1.0 V出现一个最大值,而后略有下降.  相似文献   

6.
以恒电位法制备的聚吡咯纳米纤维修饰电极为研究对象,重点考察了电极电容法脱盐过程中工作电压、原料液浓度及电极极间距离等操作条件对电极脱盐效果的影响规律.实验结果表明:在工作电压为0.8~1.6 V范围内,电极的吸附量随工作电压的增加而增大,但增加幅度逐渐减小;当工作电压为1.4 V和1.6 V时,电极的吸附量基本相等且最大,为228.6 mg/m2;原料液质量分数为0.01%~0.1%范围内时,电极的吸附量随原料液浓度的增加而增大,其在溶液质量分数为0.1%时最大,为548.6 mg/m2;电极的吸附量随着电极极间距离的增加而降低,其在极间距离为28 mm时最大,分别是极间距离为35 mm和48 mm时的1.17倍和1.75倍.循环脱盐实验结果表明聚吡咯纳米纤维修饰电极具有显著的循环吸附和脱附能力,显示出良好的实用化应用前景和潜力.  相似文献   

7.
以微生物电解池为平台, 考察了阴极电势, pH以及初始乙酸盐浓度对乙酸还原及其丁酸、乙醇等产物积累的影响.结果显示, 恒定阴极电势-900mV(vs.Ag/AgCl)、 pH60时, 初始乙酸钠浓度为10g/L时, 丁酸产量最高, 可达到80(±5)mg/L, 乙醇积累26(±5)mg/L.在-900mV阴极电势下, 总碳回收率达到632%, 产物电子回收率为1306%; 在-800mV阴极电势下, 总碳回收率达到428%, 产物电子回收率为544%.控制阴极电势-850mV, 初始乙酸钠浓度由1g/L增加到5g/L, 丁酸的产量由488mg/L增加到762mg/L, 提高了56%.扫描电镜显示, 阴极碳毡上菌体主要为杆菌.对阴极附着微生物进行变性梯度凝胶电泳(PCR DGGE)分析发现, 假单胞菌属(Pseudomonas)和梭菌属(Clostridium)为主要的功能菌群, 假单胞菌可能与阴极电子传递有关, 而梭菌可能与高值有机物的合成有关.  相似文献   

8.
采用循环伏安法研究谷氨酸根配合物体系中谷氮酸根离子的稳定性和铜在阴极的电沉积过程,利用线性扫描伏安法求体系的表观活化能、表观传递系数和交换电流密度;计时电流法判断铜在电极上的成核方式.实验结果表明:在扫描电位-1.5~3 V内,谷氨酸钠溶液中仅有水的电解反应,谷氨酸根离子无氧化还原反应,铜在阴极沉秋时为不可逆过程;循环伏安曲线的感抗环说明铜在阴极沉积时经历了电结晶过程;由线性扫描伏安法求得表观活化能为34.065 kJ/mol,表观传递系数为0.360,电流交换密度为0.105 A/m2:铜在不锈钢电极上的成核方式为连续成核.  相似文献   

9.
用电化学循环伏安研究了酸性介质中4种有机小分子伯醇(甲醇、乙醇、正丙醇和正丁醇)在Pt电极上吸附和氧化过程. 结果表明:这些伯醇电氧化反应活性的顺序为:甲醇、乙醇、正丙醇、正丁醇;在-0.25 V至0.1 V的氢吸脱附电位区间,伯醇或其解离产物都会吸附在电极表面并且抑制氢吸脱附; 酸性介质中伯醇在Pt电极上的CV曲线都有两个正向氧化峰, 但峰值大小随着分子结构不同而改变; 伯醇的氧化与Pt表面生成不同氧物种密切相关; 伯醇的氧化要有表面吸附氧物种参与; 在0.18~0.48 V电位区间内, 负向电位扫描中伯醇的氧化电流明显比正向电位扫描的大, 说明这些伯醇的电氧化中都存在自毒化现象.  相似文献   

10.
用废旧电路板酸浸-电沉积法回收金属铜   总被引:1,自引:0,他引:1  
为了既保障环保又达到最佳铜回收效果的目的,以废旧电路板经过初步破碎分离,得到铜金属富集产品为研究对象,采用硫酸-双氧水浸出结合电沉积工艺回收物料中的铜。考察了铜浸出率与硫酸质量浓度、双氧水用量、浸出时间、液固比之间的关系,进行最佳金属浸出条件实验。结果表明:硫酸物质的量浓度为3.5 mol/L、浸出时间3 h、双氧水用量为20 mL、液固比10∶1条件下,铜金属浸出率最高可达到97.58%。电沉积尾液循环用以浸出铜,铜离子循环质量浓度不低于18 g/L,平均电流效率高于97.60%。在沉积温度40℃,阴极材料为T2紫铜,电流密度小于800 A/m2时,电流效率可以保持在97%以上。实验中铜回收率达到了97.58%。  相似文献   

11.
以廉价易得的农林废弃物花生壳(PE)为载体,负载对重金属Cr(Ⅵ)具有强吸附亲和性的纳米活性组分聚乙烯亚胺(PEI),制备一种新型纳米复合吸附剂PEI-PE。通过序批式吸附实验探究了PEI-PE对水中Cr(Ⅵ)的吸附性能,用动态柱吸附实验研究PEI-PE的实际应用潜力。结果表明:PEI-PE对Cr(Ⅵ)的吸附在300 min即可达到平衡,PEI-PE吸附Cr(Ⅵ)的过程符合Langmuir等温吸附模型和准二级动力学模型,属于单分子层化学吸附。在pH=3时,最大吸附量可达32 mg/g。在2种竞争离子Cl-、SO42-存在的条件下,PEI-PE依然表现出较高的吸附量。2 g的PEI-PE可将850 mL初始质量浓度为5 mg/L的含Cr(Ⅵ)废水处理后达到工业废水排放标准(0.5 mg/L),且吸附后的PEI-PE具有一定的脱附再生能力,可实现吸附剂的循环利用。  相似文献   

12.
首先通过多周期的电化学循环伏安处理法在Ni金属丝(Niw)上原位生长Ni(OH)2/NiOOH活性层作为电化学氧化葡萄糖的电极材料,然后通过逐个周期改变葡萄糖浓度(1~15 mmol/L)的循环伏安法,研究了葡萄糖在电极上的氧化机理及动力学特征,详细分析了不同电位下氧化电流与葡萄糖浓度的数学关系。结果表明:葡萄糖的电化学氧化机理是基于NiOOH对葡萄糖的化学氧化和电化学氧化再生NiOOH的耦合过程;0.16~0.24 V为葡萄糖氧化电化学控制区;在0.24~0.36 V间,响应电流随葡萄糖浓度呈等阶梯式增加,为典型的扩散控制。进一步研究表明所制备的Ni(OH)2/NiOOH/Niw电极在葡萄糖定量分析时展现了较好的线性关系(10 μmol/L~5.5 mmol/L,R2=0.9999),灵敏度达到62.7 μA/(mmol·L-1),且对模拟腹膜透析液、血液中常见共存物展现了良好的抗干扰能力。  相似文献   

13.
以铂棒为阴极,铂针为阳极,2 g·L-1硫酸钠溶液为电解质,构建了一种液下阳极放电等离子体的产生装置.用直流电源的内置电流表和电压表考查了电压对电流的影响规律,光纤光谱仪测量了不同放电电压下放电等离子体的发射光谱,pH计测定了阴极电解液、阳极电解液以及总体溶液的pH,ICCD相机研究了阳极放电的图斑变化.基于等离子体的发射光谱,计算了电子密度(Ne)、OH转动温度(Trot)和电子激发温度(Te).结果表明,阳极放电中有OH分子谱带以及O,H和Na原子谱线产生;阳极铂针周围产生H+,阴极铂棒周围产生OH-;放电20 min后,阳极周围溶液的pH约为2.5,阴极周围溶液的pH约为11.8;放电过程中,总溶液的pH基本保持在7.0左右;当放电电压从500 V逐渐升高到600 V时,OH,O,H和Na的谱线强度升高,Te从3 051 K升高到3 628 K,OH的转动温度Trot从2 100 K升高到2 800 K,电子密度Ne从2.680×1022 m  相似文献   

14.
炉渣过滤-树脂吸附法处理焦化废水的研究   总被引:1,自引:0,他引:1  
采用高温炉渣过滤,再用南开牌H-103大孔树脂吸附处理蒸氨废水,研究了酚浓度、流速、pH值对树脂吸附性能的影响,以及不同脱附剂、流速、温度对树脂脱附再生的效果。结果表明室温下以4 BV/h流速吸附处理含酚520 mg/L、CODCr3 200 mg/L的蒸氨废水,调节废水pH 6,处理体积为60 BV,树脂吸酚量为42 mg/ml。处理出水酚含量≤0.5 mg/L,CODCr≤0达到国家排放标准。选用0.5 BV甲醇做脱附剂,室温以2 BV/h流速进行洗脱再生,脱附率达98%以上。经100次循环使用,树脂性能不变。脱附剂脱附达饱和后,再通过蒸馏回收甲醇和其中的酚,剩余残渣做焚烧处理。  相似文献   

15.
为实现玻碳电极在电化学传感器领域的高灵敏度检测利用, 在pH=5.0的磷酸盐缓冲溶液中, 用恒电位法对玻碳电极进行电化学活化,考察pH值、富集电位及富集时间对Pb2+检测效果的影响, 并研究最佳实验条件下的活化电极对Pb2+的检测性能. 实验结果表明:该活化电极对Pb2+的电化学检测响应电流具有增强效果,并具有检测时间短、灵敏度高的特点;检测线性范围为1×10-10~ 5×10-6 mol/L,最低检出限和定量限分别为3×10-11 mol/L和1.0×10-10 mol/L. 该活化电极在自来水Pb2+的测定中具有较高回收率, 可用于实际水质检测.  相似文献   

16.
三价铬还原电沉积机理   总被引:9,自引:1,他引:9  
采用循环伏安法、极化曲线、恒电流阶跃、交流阻抗等电化学方法研究了Cr3 在氯化物/N,N-二甲基甲酰胺(DMF)体系中的阴极还原机理.研究结果表明:Cr3 阴极还原分两步进行,其中第1步为不可逆过程,第2步为准可逆过程;反应无前置转化过程;Cr3 还原的极化曲线符合Tafel方程;Cr3 还原受电化学控制;Cr3 在还原过程中,电活性中间产物在电极表面吸附,随溶液浓度增大,Cr3 的扩散系数减小,但电活性中间产物在电极表面的饱和吸附量却随之增大.  相似文献   

17.
镉是工业废水中的有害元素,若渗入井水或流入河水中,将严重影响水的质量,危害人体健康.本文在前人工作的基础上,用阳极溶出法测定了河水中痕量镉。以镀铜焊接式玻碳汞膜电极为工作电极,0.5M NaCl,HCl为支持电解质,控制试液pH为3,氮气作除氧剂,所得镉溶出伏安曲线峰电位为-0.64伏(对S.C.E),镉浓度在1—800ppb范围内峰电流与浓度间呈现良好的线性关系,灵敏度为1×10~(-9)克/毫升.方法应用于成都地区某些河水样品中镉的测定,回收试验误差小于±10%.  相似文献   

18.
采用方波溶出伏安法,以自组装单层保护Au纳米粒子修饰金电极为工作电极测定铜离子;实验结果表明:在0.2 mol/L的NaCl体系下,富集电位为-0.25 V,Au纳米粒子修饰金电极测得铜的峰电流值为9.746×10~(-8)A,裸金电极的峰电流值为2.335×10~(-8)A;经过修饰后的金电极峰电流明显大于裸金电极的峰电流,且随Au纳米粒子组装时间增加,修饰后的金电极测出的峰电流也明显增大。  相似文献   

19.
采用电化学循环伏安、恒电势技术详细考察了浓碱条件下金属锌的电化学行为,利用扫描电子显微镜(SEM)和X-射线能谱仪(EDS)分析了经电化学腐蚀后锌电极的表面形貌及组成.结果表明:在电化学循环伏安交叉环电势区,恒电势电流振荡条件下在电极表面可产生纳米锌氧化物阵列或薄膜;此外,电化学循环伏安反扫电流远大于正扫电流的主要原因是电极表面锌氧化物/氢氧化物钝化物种的生成与活性络合溶解,这也是电流振荡的主要原因.  相似文献   

20.
将玻碳电极用氧化石墨烯修饰后电聚合上苏木精聚合膜,利用该修饰电极差分脉冲溶出伏安法同时测定铅和镉.对支持电解质及其缓冲溶液、富集电位及富集时间测定条件进行了优化.在0.1 mol/L pH 3.5的NaAc-HAc缓冲液中,以此修饰电极为工作电极,在-1.1 V处搅拌富集220 s,用差分脉冲伏安法分别测定-0.58 V和-0.8V处的氧化峰电流.结果表明,该电极显著提高了铅和镉的电化学响应信号.在优化条件下,峰电流与铅和镉的浓度在0.01~1μmol/L范围内呈良好的线性关系,相关系数为0.991~0.995.检出限分别为8 nmol/L(Pb2+)和1 nmol/L(Cd2+)(S/N=3).将该法用于实际水样中痕量铅和镉的测定,回收率为92.2%~105.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号