共查询到20条相似文献,搜索用时 0 毫秒
1.
本文介绍了人眼定位与跟踪算法。首先采用灰度投影曲线与灰度直方图估计初始闽值相结合的恩想进行人眼检测;然后运用Kalman算法与Mean Shift算法进行人眼的跟踪。实验表明该方法具有计算简单、快速、有效等优点。 相似文献
2.
为了避免日常生活中因疲劳造成的交通事故, 利用人眼图像识别技术对驾驶进行疲劳监测。设计并提出了一套基于图像信息判断驾驶员疲劳状态的流程。首先使用Viola-Jones 算法, 在图像中直接进行人眼定位,再对人眼图像进行处理, 得到人眼长宽比值Q, 最后建立了Q 值和疲劳状态的关联模型。实验证明, 该定位方
式比传统方式检测速度提高了50%以上, 同时能适应头部不同姿态; 建立的“眼部相对长宽比-睁眼程度冶模型具有良好的线性。模拟实际驾驶环境进行测试结果表明, 监测系统能适应不同受试者并在1 s 内对疲劳状态的驾驶员发出警报, 在防疲劳安全驾驶领域有一定的应用前景。 相似文献
3.
司机疲劳驾驶检测中人脸图像的快速人眼定位 总被引:1,自引:0,他引:1
在司机疲劳驾驶检测中,对人眼的高效,实时准确检测是关键步骤之一。本文研究了司机人脸图像中的人眼检测方法。首先,将得到驾驶员面部图像隐射到YCbCr空间,建立基于肤色的二维高斯分布模型,通过滤波,标记分割出肤色并得到人脸的区域;然后,利用人眼的分布特点及自身特性,通过两次定位的方法实现了对司机人脸的人眼定位。 相似文献
4.
运动目标检测与跟踪的算法一直以来是计算机视觉领域中的核心课题,也是智能视频监控中的关键技术。它主要是包含了图像处理、模式识别、人工智能等领域内的成果。着重研究运动目标检测与跟踪的算法[13],并通过编程实现方法的有效性。在运动检测方面,主要应用的算法包括背景差分法、帧间差分法以及光流法,指出了这些算法的优缺点以及适用范围。在运动目标跟踪方面,主要研究了特征匹配跟踪算法中的Mean Shift算法[19]。 相似文献
5.
MeanShift算法因为简单性和稳定性在目标跟踪中得到广泛应用,但是当目标和背景的颜色模型比较接近时,传统的MeanShift算法由于缺少空间信息,且经典的相似性度量函数不易区别,导致跟踪失败。为了克服上述缺点,采用基于空间颜色特征和新的相似性度量的MeanShift算法,并提出一种融合Kalman滤波器和改进的MeanShift算法的目标跟踪方法。首先,利用改进的MeanShift算法计算出当前帧中目标的准确位置,然后使用Kalman滤波器去预测下一个初始搜索位置,用于下一帧中MeanShift迭代,最后实现对目标的跟踪。实验结果表明,该算法可以准确地跟踪目标,并且跟踪的准确率优于传统的MeanShift算法或者Kalman和传统Meanshift的融合算法。 相似文献
6.
分析了疲劳驾驶检测的研究现状,介绍了当前使用最为广泛的几种检测技术以及研究成果,综合分析比较了各种检测方法的优劣性,最后总结指出了疲劳驾驶检测的重要意义以及发展趋势,继续开展以明确检测标准为基础,以计算机视觉为重要手段,以信息融合为大方向的研究。 相似文献
7.
在复杂背景的图像中,用直方图作为目标的特征模板,依据颜色分布进行匹配,具有较好的稳定性.Mean Shift算法是计算最优解的一个高精度算法,能在良好的目标初始化的前提下跟踪到无遮掩的目标.但其新目标由手工标定,特征模板计算量很大,且容易丢失遮掩情况下的目标,所以对Mean Shift算法进行了四处改进.改进后的算法能够准确地初始化、并快速精确地跟踪目标. 相似文献
8.
直敏 《沈阳师范大学学报(自然科学版)》2012,30(4):515-518
在复杂背景的视频图像中,实时、准确、连续、长距离的跟踪以人为对象的目标,是一件很困难的任务。人体对象在跟踪目标图像位置的变化时,一直随着姿态的变化而改变,因此这是一个非常典型的非刚体目标,对这类目标采用简单的模板匹配的方法进行目标跟踪,无法达到准确的跟踪。均值漂移(Mean Shift)是现今最受欢迎的对象跟踪方法之一,广泛的运用于人脸的跟踪,文章提出了一种基于均值漂移算法的复杂背景视频图像检测与跟踪算法。在运动目标跟踪中,提出了以直方图为模式特征,以均值漂移算法为核心算法的目标跟踪算法,通过实验表明该跟踪算法能对候选目标进行运动检测,完成实时跟踪,同时有效抑制了局部遮挡、背景混乱等,过滤了伪目标,保证了跟踪的可靠性。 相似文献
9.
分析了传统Mean Shift跟踪算法在外观模型对光照变化敏感以及外观模型更新上容易积累误差等缺点,结合了传统Mean Shift 跟踪算法计算速度快和易于组合的优点,设计了两种不同外观建模的Mean Shift跟踪算法。第一种Mean Shift跟踪算法采用传统的RGB颜色模型提取外观模型,第二种采用对光照变化不敏感的非色彩与梯度信息提取外观模型。结合这两种跟踪算法,通过这两种跟踪算法跟踪的目标进行加权得到的目标位置,以及根据协同更新的原理对这两种跟踪器的外观模板进行更新。这样不仅使得跟踪准确率得到了一定的提高,而且对外观变化的适应能力也大大的提高。 相似文献
10.
人脸检测技术具有非接触、方式友好、干扰因素小、容易被人接受等特点,非常适合用于驾驶员疲劳驾驶状态的监视。在此就人脸检测技术应用于疲劳驾驶监视系统过程中所涉及的软件开发平台以及图像处理算法等问题做一简单的介绍。试就采用Intel公司开发的OpenCV软件平台实现人脸检测在疲劳驾驶监视方面的应用做一讨论。 相似文献
11.
基于Mean Shift算法跟踪视频中运动目标 总被引:2,自引:0,他引:2
针对Mean Shift算法在视频中跟踪目标与背景的像素差值不明显时跟踪效果不佳,提出了Mean Shift改进算法.实验表明,该算法能有效、准确地跟踪视频中的运动目标,计算量小,可以满足实时性要求高的场合. 相似文献
12.
为避免疲劳驾驶,通过提取面部疲劳特征参数的方法研究了驾驶员疲劳检测技术.对SSD(single shot multi box de-tector)目标检测算法及连续自适应均值漂移跟踪算法(continuously adaptive MeanShift,CamShift)进行优化,以检测人脸区域.利用特征点定位提取面部疲... 相似文献
13.
基于脑电信号的驾驶疲劳检测研究 总被引:4,自引:1,他引:4
研究利用脑电信号(EEG)判断驾驶员的疲劳程度. 基于疲劳驾驶实验平台进行模拟驾驶实验,综合实验视频图像和驾驶员自我评价进行主观疲劳评测. 利用生理检测仪采集驾驶员的脑电波,对比分析脑电信号不同频带信号功率谱值和驾驶员的主观疲劳评测之间的关系. 结果表明:主观疲劳评测与脑电信号中功率谱值的变化相对应,脑电功率谱的比值(α+θ)/β越大,疲劳等级越高. 相似文献
14.
视频跟踪算法是计算机视觉实践课程中比较受关注的实验项目。针对突变情况下传统Mean Shift跟踪算法无法实时准确跟踪的问题,设计了基于模板更新和线性预估的Mean Shift跟踪算法创新实验项目。在模板更新策略下,引入背景模板,通过将原目标模板和背景模板与设定的阈值进行比较来对干扰因素进行判定,当干扰因素判定目标受到遮挡时,引入线性预估方程进行目标位置预测,有效解决目标在遮挡情况下跟踪丢失的问题。通过对测试视频的跟踪效果和性能进行对比分析,验证了算法在突变情况下相较于传统算法具有更好的抗干扰能力。以算法创新设计为核心,通过开放性创新实验项目的选题、设计、答辩、反馈的闭环实验过程,有效提高了学生算法创新设计能力。 相似文献
15.
针对目前常用的人眼检测方法误判率高,计算量大的特点,提出了一种基于多次分割的机器视觉人眼检测方法,进行疲劳驾驶检测研究。首先,将图像由RGB颜色空间转换至HSL空间,设定HSL空间分割阈值得到人脸初分割图像(第一次分割),经过滤波,膨胀、腐蚀等操作后与源图像进行掩膜。然后,按照初分割方法再进行第二次和第三次人眼分割;最后利用统计双眼面积和的方法实现疲劳检测。动态实验中,人眼识别准确率为93%,疲劳检测准确率为90%,表明该方法能较好地解决复杂背景中人眼定位问题,准确率较高、速度快,算法移植性强。 相似文献
16.
研究基于驾驶行为判断驾驶状态的方法. 基于驾驶模拟舱进行实验,通过分析驾驶人在疲劳状态下的方向盘转角操作特征及油门幅值变化情况,提取了方向盘不动时间占空比和油门幅值均值作为疲劳状态判别指标,通过方差分析进行方向盘不动时间选取的优化,运用Fisher线性判别算法对驾驶状态进行识别,得到了较为准确的识别率. 相似文献
17.
疲劳驾驶是导致交通事故的重要原因,严重影响公众的交通安全出行,受到全球各国的高度重视,科研人员进行了大量研究.相关文献从生理特征信息、车辆行为特征信息、视觉特征信息和多特征信息融合等4个维度进行了梳理,并指出了不同检测方法的优缺点.最后,基于不同场景的应用需求,指出了基于深度学习、神经网络与多特征信息融合的疲劳检测研究... 相似文献
18.
现实中基于图像处理的疲劳驾驶监测往往因环境的变化而具有不确定性。监测算法不规范,以致于疲劳驾驶监测任务很具有挑战性。为了解决此问题,提出了一种基于多算法融合的动态滑动窗口算法框架。首先利用Adaboost算法识别人眼,然后改进Otsu算法来自适应各种不同环境;进而提出动态滑动窗口算法来得到睁闭眼之间的最佳阈值;最终,利用改进的PERCLOS算法估计疲劳驾驶状态的不同级别。针对环境的变化采用睁闭眼判断窗口随人眼特征变化而更新的策略,系统使用摄像头实时捕获人眼图像,并在PC机上进行仿真测试,可在130~150ms之间实现不同疲劳状态的识别。实验结果表明,此算法框架能够有效、快速的分辨驾驶员不同的疲劳状态。 相似文献
19.
针对传统Mean Shift算法跟踪窗口固定不变,无法对不断改变尺寸的车辆目标进行有效跟踪的问题,文中根据车辆跟踪的特点,提出一种基于Mean Shift和C-V模型的车辆跟踪算法.首先利用传统Mean Shift得到初始跟踪窗口,然后根据C-V方法所提取的车辆形状信息对跟踪窗口的中心和大小做进一步修正,在跟踪过程中综合利用了目标颜色、形状等信息,同时对传统C-V方法进行改进,采用一种新的初始化水平集函数表达方法.实验结果表明,文中算法在满足实时性要求的同时,大大提高了车辆跟踪精度. 相似文献
20.
目标跟踪是视频运动图像数据分析前期的一项关键技术,通过对目标点的定位跟踪,以便研究人员在跟踪过程中提取运动目标的相关参数,有助于对视频图像中目标的运动技术进行分析。结合模板匹配快速定位算法与Mean Shift算法,研究了运动图像序列中目标点的自动定位与跟踪问题。实验结果显示,算法具有良好跟踪效果。 相似文献