首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
通过对沈阳华强金廊城市广场项目基坑进行长期监测,对该深基坑的桩顶水平位移、桩体水平位移及变形和锚索预应力值进行了分析,探究了桩锚支护体系受力特点和变形规律.研究结果表明:砂土地层基坑围护结构变形的时间效应不显著,围护桩桩顶水平位移空间效应特征明显,围护桩桩体水平位移呈两头小、中间大的鱼腹状变形,桩体受锚索预应力影响产生类似简支梁变形曲线,锚索受季节性冻胀影响显著,且从上到下影响逐渐减小;桩锚支护体系采用600 mm桩径的围护桩具有工程可行性,控制变形能力较强.  相似文献   

2.
目的研究在非对称荷载作用下装配式可回收支护结构基坑在开挖过程中支护结构的受力变形特性.方法依托郑州市某顶管工程,运用有限元软件ABAQUS模拟非对称荷载条件下装配式可回收支护基坑开挖全过程,分析支护结构的水平位移及受力.结果基坑开挖完成后,非对称荷载侧桩体水平位移及弯矩均不一致,荷载较大侧桩顶位移和桩体上部弯矩更大.随着较大侧荷载的增加,同侧桩体上部的坑内位移量及弯矩值相应增大,冠梁和第1层腰梁在非对称荷载两侧的轴力分布及大小有明显差别.结论 荷载较大侧的支护结构变形较大,受力情况复杂,施工时应重视并密切监测.  相似文献   

3.
依托洛阳市周山大道下穿开元大道项目,对卵石地层偏压深基坑支护结构力学特性及影响因素进行研究。采用MIDAS GTS NX建立二维有限元模型,对比不同条件下支护结构侧向位移、弯矩和轴力,探讨深基坑旁偏压荷载位置、大小、分布宽度及基坑开挖深度对基坑支护体系变形的作用,得出桩身随条件变化方程式及相关系数。结果表明:当堆载达到60kPa,左侧桩体位移变幅为56.80%,右侧桩体位移小于左侧且向远离基坑方向移动,坑边荷载大于等于105kPa时桩体变形将达到本项目规定预警值;堆载与坑边距离的大小和围护桩侧移量呈极高相关,基坑至堆载距离大于1.5倍设计开挖深度时,支护结构受力变形趋于稳定;基坑开挖深度达到1.8倍设计开挖深度时,基坑灌注桩受到荷载分布宽度影响几近于零。工程实测值与模拟计算值对比分析,验证了本文方法准确性,可为偏压深基坑工程提供借鉴。  相似文献   

4.
基坑开挖受周围环境制约较大,需根据具体条件采取不同的支护方式。尤其对于狭长基坑两侧存在偏压的情况,基坑变形以及支护结构受力会存在较大差异。本文以西安科技八路综合管廊深基坑支护工程为研究对象,采用数值模拟与现场监测相结合的方法,对偏压条件下基坑的变形以及支护结构受力变化规律进行了深入的研究分析。研究结果表明:随着基坑开挖,水平位移和竖向位移均呈逐渐增大趋势,锚杆和内支撑对水平位移控制效果明显。桩身内力在锚杆与内支撑位置突变明显,避免了桩身受力过大。由于受右侧已开挖基坑的影响,导致基坑两侧变形有所差异,但位移值相差不大。说明该深基坑支护方案设计合理,支护效果良好,满足偏压条件下对基坑变形控制的要求。研究结果可为类似基坑工程的支护与开挖提供一定的指导。  相似文献   

5.
基坑开挖会对邻近建筑物产生影响,建筑物的存在也会增加基坑施工的风险,开展基坑与邻近建筑物的相互影响研究具有重要意义。以某深基坑工程为背景,通过现场监测数据分析基坑开挖对围护桩位移的影响,然后建立三维数值模型,并与现场监测进行对比验证了模型的准确性。最后分析了围护桩刚度、建筑物层数及基坑与建筑物相对位置等参数下基坑与建筑物的相互影响规律。研究结果表明:采用围护桩结合锚索支护会显著减小基坑开挖引起的围护桩变形,基坑开挖引起的建筑物基础沉降和水平位移随围护桩刚度的增加变化幅度均在5%以内;建筑物层数每增加5层,建筑物基础的沉降和水平位移分别增加约8%和10%,靠近建筑物的基坑围护桩水平位移增加约5.5%;在建筑物与基坑的夹角在30°以上时,基坑开挖引起的建筑物基础变形均在2 mm以内,引起的围护桩水平位移均在0.8 mm以内。研究结果可以为后续类似工程提供参考和借鉴。  相似文献   

6.
以青岛地铁1号线胜利桥站施工为工程依托,对土岩组合复杂地质条件下深基坑开挖过程中围护结构桩撑体系的变形及受力特性进行研究,采用现场监测数据分析和有限元软件建模分析方法,研究上软下硬地层条件下基坑开挖土体受力及变形分布规律和基坑围护结构变形规律及受力机理.得出的结论:①桩体位移峰值位置随开挖过程不断下移,且围护桩桩体变形...  相似文献   

7.
文章基于在基坑支护工程中,将水泥土搅拌桩生成挡墙围护的工程实际应用,考虑其受力的基本模式和变形的基本条件,简化为弹性支护结构的位移计算模式进行变形分析;并结合文献资料作出对比,同时对支护结构的水平压顶梁进行了简化受力分析对比,得出有益的结论,说明该位移形式符合实际工程。  相似文献   

8.
为了探究竖向荷载(V)和水平荷载(H)组合作用下的地铁车站围护结构变形特性,以南宁地铁5号线某地铁车站基坑为依托,首先采用FLAC3D有限差分软件对基坑开挖支护进行数值模拟,将受V-H组合荷载和仅受水平荷载作用的基坑围护结构变形计算结果进行对比分析,然后将数值计算得到的规律与现场监测数据进行对比验证.结果表明:现场实监测值与数值计算值较吻合,受V-H组合荷载和仅受水平荷载作用的基坑围护桩变形形式一致,预先作用的竖向荷载对桩身变形形式的影响较小;预先作用的竖向荷载能使围护桩身最大水平位移位置下移,下移深度约为开挖深度的12.5%;监测结果显示,V-H组合荷载下的围护桩身最大水平位移增大约27%,削弱了围护桩的水平承载力,同时预先作用的竖向荷载使内支撑轴力增大约10%.  相似文献   

9.
既有围护桩于一体的双排桩支护结构是一种新型的基坑支护结构.该结构体系在实际工程中应用较少,为了验证其在实际工程中的合理性与安全性,基于合肥市某深基坑工程,对双排桩结构计算的模型、方法以及前后排桩的受力进行阐述和计算;对施工过程进行监测并运用有限元软件MIDAS GTS模拟分析基坑开挖后前排桩及周围土体的位移,通过监测值...  相似文献   

10.
硬土场地基坑变形监测与分析   总被引:2,自引:0,他引:2  
南京阳光雅居4期基坑工程处于硬土场地中,基坑开挖深度5.7 m,局部7.0 m,围护体系采用了人工挖孔灌注桩和土钉墙2种支护结构形式.施工过程中分别对桩项圈梁水平位移、土钉墙墙顶水平位移、围护桩桩侧土体深层水平位移、邻近建筑物沉降、邻近道路沉降进行了长达8个月的监测.依据硬土的物理力学特性和本次基坑变形监测结果,分析表明:硬土场地中快速挖土卸载,可致使基坑支护结构产生明显水平位移,而周围土体水平位移相对较小,由于两者变形不协调,通常导致支护结构和土体间出现裂缝;硬土场地中基坑开挖引起的邻近建筑物和道路沉降较小,对周围环境影响不明显.  相似文献   

11.
深基坑变形规律现场监测   总被引:6,自引:0,他引:6  
给出了北京地铁某车站深基坑围护和变形监测方案,对基坑变形规律进行了现场监测研究,重点分析了基坑的水平变形、锚索内力和钢支撑轴力变化规律。结果表明,基坑开挖的深度与无支撑暴露的时间对围护桩的变形、锚索内力及钢支撑的轴力影响较大。随着基坑开挖深度的增加和钢支撑的施加,围护桩的变形形态由向坑内的前倾型曲线逐渐变为弓形。围护桩的水平位移、钢支撑的轴力也随着基坑开挖深度的增加而增大。随着钢支撑的施加,围护桩水平位移及锚索内力都趋于稳定,说明钢支撑、围护桩和预应力锚索联合支护形式能够有效地控制基坑变形,保证地铁车站安全施工。  相似文献   

12.
通过对沈阳站东站房地下通道工程开挖过程的数值模拟,对基坑开挖过程中地面沉降、支护桩的变形、立柱的内力和下卧地铁区间的变形进行了计算分析.结果表明,托换板可以有效地限制支护桩的水平位移和基底土体的隆起,进而控制地表沉降的产生;基坑开挖过程中所引起的基底土体隆起会使立柱自身的轴力增大,影响内支撑结构体系的稳定;基坑开挖对其下卧地铁区间的水平、竖向位移有明显影响,区间以"水平向压缩、竖向拉伸"的椭圆形形式产生收敛变形.交叉建设的基坑工程对周围环境及建构筑物的影响不容忽略.  相似文献   

13.
结合某地铁车站基坑开挖工程,基于基坑支护结构的现场实测数据,对排桩内支撑基坑支护体系桩顶水平位移,桩体侧向位移及基坑周边土体沉降量进行分析,得出基坑围护结构各项位移和周边土体沉降随时间及开挖深度的变化规律.建立研究区二维有限元模型,并将实测数据与模拟值进行对比,研究支护结构内力变化及桩后土体应力状态.研究结果表明:基坑长边桩顶水平位移约为短边桩顶水平位移的3倍,桩体最大侧向变形量位于1/2H(H为基坑开挖深度)处;基坑开挖及降水引起地面沉降范围约3H,基坑周边各监测断面最大沉降量出现在距基坑边22m处(约0.82H~0.96H),内支撑架设有助于增大基坑整体稳定性.  相似文献   

14.
给出了森公地铁车站深基坑围护和变形监测方案,对基坑变形规律进行了现场监测研究,重点对基坑围护桩的水平位移和钢支撑的轴力变化进行了现场监测。结果表明:桩顶水平位移反映围护结构的顶部变形情况,能直接反映围护结构的变形特性,是评价围护结构安全状况的重要指标;在有钢支撑作用的情况下,围护桩变形最大的部位位于距桩顶2/3基坑开挖深度处;钢支撑轴力随开挖深度增加而增加,其大小变化与开挖方式、开挖速度以及天气等因素有关。  相似文献   

15.
依托天津地区软土大背景下的深基坑工程,对天津市某医院大尺度深基坑开挖施工过程中的现场观测数据进行理论分析,并利用FLAC~(3D)软件建立3D基坑模型并对基坑开挖支护全过程进行动态模拟,将软件计算结果与基坑现场监测数据进行对比。对比结果表明:模拟所得数值与现场观测数据规律较为贴切,随着基坑开挖进一步进行,外侧土体位移量逐步增加,当基坑开挖全部完成时,土体出现最大沉降量,桩顶水平位移与深层水平位移均满足监控测量标准的要求,说明所选取的支护结构等措施可以较好地控制基坑围护结构的变形并提出预测最大侧向位移的公式为后续类似工程提供一定的参考依据。  相似文献   

16.
降水渗流引起的基坑变形问题十分复杂,采用流固耦合的数值方法,以兰州某地铁车站红砂岩深基坑为研究背景。对围护桩体水平位移、基坑内外土体竖向位移和水位变化进行现场监测,利用FLAC3D建立车站基坑降水开挖耦合模型,分析了围护结构的变形特性以及基坑内外土体竖向变形规律。结果表明围护桩体最大水平位移在0.5倍左右坑深处;基坑开挖对周围土体在0至2.5倍坑深范围内的沉降变形影响显著,最大沉降值发生在距离基坑边缘约0.55倍坑深;降水引起的基坑内外沉降随时间增加呈减小的趋势,降水与立柱桩联合作用使坑底隆起显著减小,基坑内外同时降水有利于解决红砂岩透水问题。考虑流固耦合的数值模拟与现场监测相结合预测兰州地区基坑变形更具科学性。  相似文献   

17.
地铁车站深基坑围护结构变形规律监测   总被引:2,自引:0,他引:2  
以西安地铁2号线北大街地铁车站北区深基坑工程为依托,完成了深基坑围护结构现场监测方案设计重点分析了桩身水平变形规律、锚索受力特点、钢支撑轴力分布规律结果表明,桩身水平位移,特别是桩顶水平位移,能直接反映围护结构变形特性,是围护结构安全状况的重要指标钢支撑对深基坑变形有明显的限制作用  相似文献   

18.
针对深大基坑人工监测中监测不及时、监测数据精度低、监测数据少等问题,以武汉某基坑工程为依托,利用自动化监测与采集设备获得了基坑变形、受力等监测数据,利用前端开发工具Visual Studio Code和后端开发工具IntelliJ构建了深基坑自动化监测与智能预警云平台。研究结果表明,支护桩最大水平位移在0.4倍支护桩长位置处,地表沉降随基坑开挖深度增加而增大,支撑轴力随基坑开挖深度增加而线性增大且轴力增长速率随后续支撑施加而降低。深大基坑自动化监测及智能预警平台实现了基坑施工全过程中自动化监测、智能动态预测与风险评估。  相似文献   

19.
为研究软土地区城市中心区域基坑开挖对临近道路地表沉降的影响,围护结构顶部变形规律,内支撑轴力变化趋势以及内支撑对道路地表沉降和围护顶部变形的影响性状,以上海地区陶家宅深基坑工程为背景,通过对该深基坑开挖过程中围护结构顶部水平位移、垂直沉降,临近道路地表沉降,内支撑轴力进行信息化监测,并对实测数据进行了分析。结果表明:位于基坑中部位置的围护结构,其顶部水平位移的变化速率及最终位移量都要比处于坑角位置处的围护结构相应的值要大,且二者差值较大。基坑临近道路地表在不同的工序下不是以单一沉降特征进行沉降,而是不同特征交替出现。由此可见:内支撑可较好的约束围护结构顶部变形以及道路地表沉降,在开挖时要缩短暴露时间及时加设支撑。基坑中部的变形及沉降均要大于角部位置处的变形与沉降,在施工时要对该位置做好防护工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号