首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
烟气含氧量是影响火电厂锅炉运行安全性和经济性的一个重要因素,影响锅炉烟气含氧量的因素多而复杂,对烟气含氧量特性进行建模与控制是实现锅炉正常运行的基础。借助现场运行数据,根据锅炉烟气含氧量的特性,建立基于最小二乘支持向量机(LSSVM)的锅炉烟气含氧量预测模型。在此基础上结合全局寻优的混合粒子群算法(PSO),对锅炉烟气含氧量进行控制。仿真结果表明:该方法能够比较准确地对火电厂锅炉烟气含氧量进行测量和控制,为锅炉燃烧系统的闭环控制与优化运行提供了新的手段。  相似文献   

2.
针对现有车载锂电池荷电状态(SOC)估算方法存在误差大、动态模型建立困难及模型适应性差等问题,文章提出一种采用动态神经网络(NARX)来实时估算车载锂电池SOC的方法。首先由改进人工鱼群算法寻优得到最佳NARX的结构参数,以建立初步的锂电池SOC估算模型;其次根据不同工况更新模型中的结构参数,增强估算模型自适应性。估算模型的输入分别为锂电池的电压、电流、欧姆内阻,其中锂电池的欧姆内阻是依据电池模型通过递推最小二乘法在线辨识获取,随温度和电池健康状态(SOH)实时变化。在两种典型工况下做车载锂电池放电试验,并采用两种不同锂电池来验证估计模型的适应性,结果表明该方法的预测精度高、适应性好,两种工况下的估计误差均低于0.045,两种锂电池下的估计误差均不超过0.043。  相似文献   

3.
针对容差模拟电路软故障,提出一种基于多群体协同混沌粒子群算法优化最小二乘支持向量机的故障诊断模型。首先,对模拟电路采集信号进行小波分析预处理;然后,提取特征信息作为样本输入LSSVM进行分类决策,并运用多群体协同混沌粒子群算法对LSSVM的结构参数进行优化。仿真实验结果表明:该模型具有较高的诊断正确率,可用于模拟电路的软故障诊断。  相似文献   

4.
为有效地解决现有综合管廊投资估算方法的预测精度不高,且预测精度易受样本量大小、特征参数冗余或贫缺等问题,构建一种将主成分分析法(PCA)与粒子群算法(PSO)优化最小二乘支持向量机(LSSVM)结合的综合管廊投资估算预测模型.采用PCA对影响综合管廊投资估算的特征参数进行降维,剔除噪声或冗余数据,以贡献率较大的主成分作为LSSVM的输入向量,综合管廊单公里造价作为LSSVM的输出向量;利用PSO对LSSVM的核函数参数σ与惩罚因子参数C进行寻优,建立基于PCA PSO LSSVM的综合管廊投资估算预测模型,并对测试集样本进行预测.预测结果显示:PCA PSO LSSVM模型平均相对误差为3.28%,满足投资决策阶段对投资估算预测误差的要求(±10%),且与PCA LSSVM模型、PSO LSSVM模型、GA BP模型和GA SVM模型相比,预测精度分别提高了67.29%,70.52%,48.13%和38.60%.PCA PSO LSSVM模型预测精度高,泛化性能优,可作为综合管廊投资估算的有效预测方法.  相似文献   

5.
针对网络流量的时变性和非平稳性特点,为提高网络流量预测精度,提出一种“多子种群”机制的粒子群算法和支持向量机的网络流量预测模型(Multi-Subpopulation Particle Swarm Opti-mization and Support Vector Machine,MSPSO-SVM).首先支持向量机(Support Vector Machine,SVM)参数编码成粒子位置串,并根据网络训练集的交叉验证误差最小作为参数优化目标,然后通过粒子间信息交流找到最优SVM参数,并引入“多子种群”机制,解决粒子群优化(Particle SwarmOptimization,PSO)算法的早熟停滞缺陷,最后根据最优参数建立网络流量预测模型,并采用实际网络流量数据进行仿真测试.结果表明,相对于其他预测模型,MSPSO-SVM可以获得更优的SVM参数,网络流量预测精度得以提高,更加适用于复杂多变的网络流量预测.  相似文献   

6.
采用黑洞(BH)算法对最小二乘支持向量机(LSSVM)的惩罚系数C及径向基核函数参数σ进行搜索优化,提高LSSVM的预测性能.黑洞算法模拟自然界黑洞,吸引一定范围内的星体向其运行并吸收它们;算法在运行过程中,始终保持黑洞为最优解,通过星体的运行搜索整个空间.通过基于黑洞算法的LSSVM和基于粒子群(PSO)算法的LSSVM实现对二维函数的预测,并对二者进行了仿真研究.仿真结果证实,黑洞算法可以更好地实现LSSVM参数的优化搜索,且基于黑洞算法的LSSVM方法具有更高的预测精度.  相似文献   

7.
为了能够精确地估计锂电池的电池荷电状态(SOC),考虑了影响电池SOC估计精度的主要因素及传统电池SOC估计的优缺点,在自适应无迹卡尔曼滤波(AUKF)的基础上,提出了一种改进的AUKF算法,并且对影响SOC估计的主要因素在算法上进行了参数校正。该算法基于电池的二阶RC等效电路模型,把每次测量的输出偏差协方差作为噪声协方差,得到改进的AUKF算法,使得噪声的协方差能够随着时间进行更新,解决了噪声的协方差为常量带来误差的问题。实验结果表明,利用改进后的AUKF算法可以精确地估算出电池SOC值。  相似文献   

8.
采用黑洞(BH)算法对最小二乘支持向量机(LSSVM)的惩罚系数C及径向基核函数参数σ进行搜索优化,提高LSSVM的预测性能.黑洞算法模拟自然界黑洞,吸引一定范围内的星体向其运行并吸收它们;算法在运行过程中,始终保持黑洞为最优解,通过星体的运行搜索整个空间.通过基于黑洞算法的LSSVM和基于粒子群(PSO)算法的LSSVM实现对二维函数的预测,并对二者进行了仿真研究.仿真结果证实,黑洞算法可以更好地实现LSSVM参数的优化搜索,且基于黑洞算法的LSSVM方法具有更高的预测精度.  相似文献   

9.
荷电状态(SOC)是动力锂电池管理系统的重要参数,使用传统算法优化锂电池SOC预测模型参数,收敛性相对较差,容易陷入局部最优解。对此,采用改进果蝇算法(IFOA)对最小二乘支持向量机(LSSVM)的参数进行优化,通过引入自适应松弛项来提高预测精度和收敛速度,获取全局最优解。选用磷酸锂电池为研究对象,测量其工作电压、工作电流和SOC,并将数据作为测试集,在MATLAB平台上建立基于IFOA优化的最小二乘支持向量机SOC预测模型。结果表明:IFOA优化的LSSVM动力锂电池SOC预测结果和实测结果吻合良好,平均绝对误差(MAPE)为1.02%,泛化能力强,预测精度相较果蝇算法最小二乘支持向量机(FOA-LSSVM)和贝叶斯算法最小二乘支持向量机(BEF-LSSVM)模型的精度更高。  相似文献   

10.
针对电池容量预测问题,引入最小二乘支持向量机(LS-SVM)方法用于判断混合动力汽车(HEV)阀控铅酸蓄电池(VRLA)的荷电状态(SOC)。考虑到最小二乘支持向量机的参数选择会对预测结果产生较大的影响,提出一种基于参数优化的最小二乘支持向量机预测方法。首先,在非线性回归预测模型的训练过程中,采用模拟退火算法来确定LS-SVM的初始值参数,从而更好地反映预测模型的复杂度,以此提高状态预测的精度。其次,由于预测模型在应对不良数据时可能出现误差增大的问题,分别采用贝叶斯证据框架(BEF)优化算法和留一交叉验证(LOOCV)优化算法来增强预测模型的抗差能力。研究结果表明:留一交叉验证优化算法具有较高的预测精度,实用性强,有效性高。  相似文献   

11.
为应对当前复杂非线性的宏观经济形势与电力消耗情况,本文提出了一种自适应粒子群算法改进的最小二乘支持向量机负荷预测模型。根据粒子群中粒子的成熟程度对其进行分类,对不同类别的粒子分别采取不同的位置更新方式,可以保持粒子种群多样性,避免造成局部最优。利用自适应粒子群算法优化最小二乘支持向量机的模型参数,经过实证分析能够一定程度提高模型的预测精度,可以为中长期负荷预测工作提供一些的参考。  相似文献   

12.
针对锂电池剩余寿命预测的直接健康因子难以测量以及预测精度不高等问题,提出一种改进灰狼优化最小二乘支持向量机(improved gray wolf optimization least-squares support vector machine, IGWO-LSSVM)的锂电池剩余寿命间接预测方法。该方法从电池放电特性曲线中获取3种表征电池性能退化的间接健康因子,通过引入tent混沌映射、收敛因子非线性递减与莱维飞行策略对灰狼算法加以改进,并结合LS-SVM模型,形成了具有全局优化的改进灰狼优化最小二乘支持向量机的锂电池寿命预测模型。最后利用NASA数据集对文中提出的方法进行了验证,并将实验结果与GWO-LSSVM、PSO-ELM和BP神经网络算法进行了对比分析,试验结果表明文中所提出的改进算法具有更好的预测性能。  相似文献   

13.
设计了一种具有偏心磁极结构的永磁驱动器,采用三维有限元仿真建立样本空间,构建具有偏心磁极结构的永磁驱动器的最小二乘支持向量机非线性回归模型;基于该模型,选择涡流损耗最小且输出转矩最大为优化目标,利用粒子群优化算法对其结构进行优化,得出最优结构参数组合.有限元仿真实验对比改进前后永磁驱动器的径向磁通密度和涡流密度分布的结果,验证了最小二乘支持向量机和粒子群算法的参数优化方法是可行的,改进的偏心磁极结构优化了永磁驱动器的涡流路径,提高了永磁驱动器的传动转矩,进一步提高了系统的工作效率.  相似文献   

14.
针对大坝变形影响因素的复杂性以及监测数据的非线性、随机波动大和预测难度大等问题,提出一种改进自适应粒子群(particle swarm,PSO)算法的混合核函数最小二乘支持向量机(least squares support vector machine,LSSVM)模型,实现了大坝水平变形的时间序列预测方法.基于Mer...  相似文献   

15.
针对水驱油藏生产过程中合适的注采参数选取难的问题,提出了以净现值和累产油量为目标函数的多目标优化注采参数设计方法。采用基于粒子群算法的最小二乘支持向量机作为替代模型代替数值模拟,并用带精英策略的非支配排序多目标优化遗传算法对注采参数进行优化。以某区块两注两采模型为例,选取生产井井底压力和注水井注入量为优化变量,通过粒子群算法优化的最小二乘支持向量机构建替代模型,在优化过程中代替数模,再利用非支配排序遗传算法对注采参数进行优化。对比分析替代模型和数值模拟优化设计的结果,其误差在3%以内,并在注采参数优化时间上得到了明显提升。  相似文献   

16.
支撑向量机是以统计学习理论为基础,以结构风险最小化(Structure Risk Minimization,SRM)为原则的新型学习机,已经广泛地用于模式识别、回归估计、函数逼近、密度估计等方面。在对已有的分类问题的SVM算法的研究分析基础上,结合Lin和Wang提出的模糊支撑向量机模型和现有的最小二乘支撑向量机模型得出最小二乘模糊支撑向量机模型。  相似文献   

17.
PSO-LSSVM分类模型在岩性识别中的应用   总被引:1,自引:0,他引:1  
为了精确解决测井岩性识别问题,提出了一种将粒子群优化算法(PSO)与最小二乘支持向量机(LSSVM)相结合对实际测井资料进行岩性识别的方法.首先使用粒子群优化算法对LSSVM建模过程中的重要参数进行优化调整,然后利用参数优化调整后得到的具有较优分类效果的PSO-LSSVM模型对某油田的测井资料进行岩性识别.实验结果表明:同基于交叉验证的支持向量机模型以及单隐层的BP神经网络模型相比,该方法能够很好描述测井数据和岩性类别之间的非线性映射关系,识别精度高,并提高了算法的自动化程度.  相似文献   

18.
参数优化支持向量机的农业大棚温室温度预测模型   总被引:1,自引:0,他引:1  
利用支持向量机核函数linear,polynomial,radial basis function和sigmoid,通过粒子群算法对惩罚参数c和gamma寻优,建立农业大棚温室温度预测模型.试验结果表明:通过粒子群算法设定惩罚参数c为14.392,gamma为0.01时,得到的P_RBF预测模型对由24个测试时间所测数据组成的训练集拟合程度达90.849%,对加入随机影响因子的由5个测试时间所测数据组成的预测集拟合程度达90.545%,显示该预测模型具备相当的鲁棒性;P_RBF模型对温室内温度预测具备相当的可靠性,可以准确预测温室内温度变化趋势,解决温室控制系统中温度难以预测的问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号