首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
烟气含氧量是影响火电厂锅炉运行安全性和经济性的一个重要因素,影响锅炉烟气含氧量的因素多面复杂,对烟气含氧量特性进行建模与控制是实现锅炉正常运行的基础.借助现场运行数据,根据锅炉烟气含氧量的特性,建立基于最小二乘支持向量机(LSSVM)的锅炉烟气含氧量预测模型.在此基础上结合全局寻优的混合粒子群算法(PSO),对锅炉烟气含氧量进行控制.仿真结果表明:该方法能够比较准确地列火电厂锅炉烟气含氧量进行测量和控制,为锅炉燃烧系统的闭环控制与优化运行提供了新的手段.  相似文献   

2.
3.
针对容差模拟电路软故障,提出一种基于多群体协同混沌粒子群算法优化最小二乘支持向量机的故障诊断模型。首先,对模拟电路采集信号进行小波分析预处理;然后,提取特征信息作为样本输入LSSVM进行分类决策,并运用多群体协同混沌粒子群算法对LSSVM的结构参数进行优化。仿真实验结果表明:该模型具有较高的诊断正确率,可用于模拟电路的软故障诊断。  相似文献   

4.
为有效地解决现有综合管廊投资估算方法的预测精度不高,且预测精度易受样本量大小、特征参数冗余或贫缺等问题,构建一种将主成分分析法(PCA)与粒子群算法(PSO)优化最小二乘支持向量机(LSSVM)结合的综合管廊投资估算预测模型.采用PCA对影响综合管廊投资估算的特征参数进行降维,剔除噪声或冗余数据,以贡献率较大的主成分作为LSSVM的输入向量,综合管廊单公里造价作为LSSVM的输出向量;利用PSO对LSSVM的核函数参数σ与惩罚因子参数C进行寻优,建立基于PCA PSO LSSVM的综合管廊投资估算预测模型,并对测试集样本进行预测.预测结果显示:PCA PSO LSSVM模型平均相对误差为3.28%,满足投资决策阶段对投资估算预测误差的要求(±10%),且与PCA LSSVM模型、PSO LSSVM模型、GA BP模型和GA SVM模型相比,预测精度分别提高了67.29%,70.52%,48.13%和38.60%.PCA PSO LSSVM模型预测精度高,泛化性能优,可作为综合管廊投资估算的有效预测方法.  相似文献   

5.
针对网络流量的时变性和非平稳性特点,为提高网络流量预测精度,提出一种“多子种群”机制的粒子群算法和支持向量机的网络流量预测模型(Multi-Subpopulation Particle Swarm Opti-mization and Support Vector Machine,MSPSO-SVM).首先支持向量机(Support Vector Machine,SVM)参数编码成粒子位置串,并根据网络训练集的交叉验证误差最小作为参数优化目标,然后通过粒子间信息交流找到最优SVM参数,并引入“多子种群”机制,解决粒子群优化(Particle SwarmOptimization,PSO)算法的早熟停滞缺陷,最后根据最优参数建立网络流量预测模型,并采用实际网络流量数据进行仿真测试.结果表明,相对于其他预测模型,MSPSO-SVM可以获得更优的SVM参数,网络流量预测精度得以提高,更加适用于复杂多变的网络流量预测.  相似文献   

6.
采用黑洞(BH)算法对最小二乘支持向量机(LSSVM)的惩罚系数C及径向基核函数参数σ进行搜索优化,提高LSSVM的预测性能.黑洞算法模拟自然界黑洞,吸引一定范围内的星体向其运行并吸收它们;算法在运行过程中,始终保持黑洞为最优解,通过星体的运行搜索整个空间.通过基于黑洞算法的LSSVM和基于粒子群(PSO)算法的LSSVM实现对二维函数的预测,并对二者进行了仿真研究.仿真结果证实,黑洞算法可以更好地实现LSSVM参数的优化搜索,且基于黑洞算法的LSSVM方法具有更高的预测精度.  相似文献   

7.
采用黑洞(BH)算法对最小二乘支持向量机(LSSVM)的惩罚系数C及径向基核函数参数σ进行搜索优化,提高LSSVM的预测性能.黑洞算法模拟自然界黑洞,吸引一定范围内的星体向其运行并吸收它们;算法在运行过程中,始终保持黑洞为最优解,通过星体的运行搜索整个空间.通过基于黑洞算法的LSSVM和基于粒子群(PSO)算法的LSSVM实现对二维函数的预测,并对二者进行了仿真研究.仿真结果证实,黑洞算法可以更好地实现LSSVM参数的优化搜索,且基于黑洞算法的LSSVM方法具有更高的预测精度.  相似文献   

8.
为了能够精确地估计锂电池的电池荷电状态(SOC),考虑了影响电池SOC估计精度的主要因素及传统电池SOC估计的优缺点,在自适应无迹卡尔曼滤波(AUKF)的基础上,提出了一种改进的AUKF算法,并且对影响SOC估计的主要因素在算法上进行了参数校正。该算法基于电池的二阶RC等效电路模型,把每次测量的输出偏差协方差作为噪声协方差,得到改进的AUKF算法,使得噪声的协方差能够随着时间进行更新,解决了噪声的协方差为常量带来误差的问题。实验结果表明,利用改进后的AUKF算法可以精确地估算出电池SOC值。  相似文献   

9.
荷电状态(SOC)是动力锂电池管理系统的重要参数,使用传统算法优化锂电池SOC预测模型参数,收敛性相对较差,容易陷入局部最优解。对此,采用改进果蝇算法(IFOA)对最小二乘支持向量机(LSSVM)的参数进行优化,通过引入自适应松弛项来提高预测精度和收敛速度,获取全局最优解。选用磷酸锂电池为研究对象,测量其工作电压、工作电流和SOC,并将数据作为测试集,在MATLAB平台上建立基于IFOA优化的最小二乘支持向量机SOC预测模型。结果表明:IFOA优化的LSSVM动力锂电池SOC预测结果和实测结果吻合良好,平均绝对误差(MAPE)为1.02%,泛化能力强,预测精度相较果蝇算法最小二乘支持向量机(FOA-LSSVM)和贝叶斯算法最小二乘支持向量机(BEF-LSSVM)模型的精度更高。  相似文献   

10.
针对电池容量预测问题,引入最小二乘支持向量机(LS-SVM)方法用于判断混合动力汽车(HEV)阀控铅酸蓄电池(VRLA)的荷电状态(SOC)。考虑到最小二乘支持向量机的参数选择会对预测结果产生较大的影响,提出一种基于参数优化的最小二乘支持向量机预测方法。首先,在非线性回归预测模型的训练过程中,采用模拟退火算法来确定LS-SVM的初始值参数,从而更好地反映预测模型的复杂度,以此提高状态预测的精度。其次,由于预测模型在应对不良数据时可能出现误差增大的问题,分别采用贝叶斯证据框架(BEF)优化算法和留一交叉验证(LOOCV)优化算法来增强预测模型的抗差能力。研究结果表明:留一交叉验证优化算法具有较高的预测精度,实用性强,有效性高。  相似文献   

11.
电池SOC的估算精度是影响电动汽车性能的重要因素之一.针对传统的卡尔曼滤波方法在滤波时,需要已知系统噪声统计特性这一问题,本文在采用RC等效电路模型,运用多元线性回归方法辨识得到电池模型参数后,提出了采用模糊自适应卡尔曼滤波算法来估算电池SOC.城市道路循环工况仿真对比结果表明,该算法相比传统卡尔曼滤波方法具有更高精度,且能够将误差保持在2%以内,较好地提高了SOC估算精度.  相似文献   

12.
基于RC等效电路的动力电池SOC估计算法   总被引:1,自引:0,他引:1  
精确的动力电池剩余电量(SOC)是混合动力系统进行动力分配的重要依据,也是整车控制和降低使用成本的关键.因而,采用简化的RC电池等效电路,建立了电池的动态充、放电模型,把该模型转化为状态空间表达式.基于不同温度下的镍氢动力电池开路电压,通过混合脉冲功率性能(HPPC)测试方法测量,得到动力电池的动态工作内阻.根据电池的动态工作电流,在线实时估算动力电池的SOC.仿真及实验室测试结果表明,该方法的估算误差小于8%,验证了该SOC估算方法的有效性.  相似文献   

13.
大坝变形预测是风险评估的关键,而涉及因素存在高度非线性.为达到好的预测效果,提出了一种基于最小二乘支持向量机(LSSVM)的大坝变形预测方法.在数据预处理方面,针对传统的参数平方、立方这种处理方式,提出变阶次概念;针对LSSVM交叉验证耗时过多,提出了一种简单可行的变参数方法 .为了快速获得优化结果,引入基于十进制的遗传算法.此外,为进一步提高预测精度,引入遗忘因子概念.最后,给出一个实例.  相似文献   

14.
针对电动汽车锂电池荷电状态(State Of Charge,SOC)的精准估算,提出一种优化的径向基(Radial Basis Function,RBF)神经网络算法;通过粒子群(Particle Swarm Optimization,PSO)算法优化RBF神经网络的参数及结构,确定RBF神经网络中的基函数的宽度以及中心;根据锂电池的充、放电机理,将SOC的影响因子电压(U)、电流(I)、内阻(R)、温度(T)作为输入向量,在Matlab中进行仿真实验;实验表明方法能够实现准确、快速、便捷的锂电池的SOC估算,其预测结果和实际测量结果的误差在4%以下,符合SOC预测误差5%的技术指标要求,对于电动汽车锂电池SOC的估算有着一定的实际应用意义。  相似文献   

15.
粒子群算法优化RBF-SVM沙尘暴预报模型参数   总被引:1,自引:0,他引:1  
为提高沙尘暴的预报准确率,针对目前已出现的RBF—SVM沙尘暴预报模型中的参数优化进行研究.利用基本粒子群优化算法(SPSO算法)中粒子速度及其位置与RBF—SVM模型中参数对相对应,对沙尘暴进行预报,为解决SPSO算法易陷入局部解的缺陷,提出了惯性权值自适应调节的改进粒子群算法(WPSO算法),并对沙尘暴RBF—SVM模型参数进行了优化.仿真结果表明,无论是SPSO算法,还是WPSO算法,在优化RBF—SVM沙尘暴预报模型参数方面都表现出了良好的性能,分别比已有的SVM方法的预报准确率提高了22.3%和45.3%.  相似文献   

16.
参数优化支持向量机的农业大棚温室温度预测模型   总被引:1,自引:0,他引:1  
利用支持向量机核函数linear,polynomial,radial basis function和sigmoid,通过粒子群算法对惩罚参数c和gamma寻优,建立农业大棚温室温度预测模型.试验结果表明:通过粒子群算法设定惩罚参数c为14.392,gamma为0.01时,得到的P_RBF预测模型对由24个测试时间所测数据组成的训练集拟合程度达90.849%,对加入随机影响因子的由5个测试时间所测数据组成的预测集拟合程度达90.545%,显示该预测模型具备相当的鲁棒性;P_RBF模型对温室内温度预测具备相当的可靠性,可以准确预测温室内温度变化趋势,解决温室控制系统中温度难以预测的问题.  相似文献   

17.
粒子群算法优化神经网络的异步电机转速估计   总被引:1,自引:0,他引:1  
在异步电机的矢量控制系统中,电机的转速检测是必不可少的,并且转速检测的精度直接影响磁场定向的准确性。讨论了各种无传感器速度辨识方法的特点,利用BP神经网络对异步电机转子转速进行辨识,通过粒子群算法优化使BP神经网络获得更好的网络初始权值和阀值,在此基础上利用Matlab/Simulink建立一个异步电机矢量控制系统,仿真结果表明这种方法能较好地辨识异步电机转子转速,系统具有良好的动态性能,对系统参数变化具有较强的鲁棒性。  相似文献   

18.
为了依据测井数据迅速而准确地识别油水层性质,提出基于小波变换(WT)与最小二乘支持向量机(LSSVM)相结合的储层油水识别方法.首先,分析了基于测井曲线的常规交会图油水识别方法的不足;其次,以深侧向探测电阻率作为训练样本和测试样本对基于LSSVM的储层油水识别模型的准确性进行分析;最后,将WT与LSSVM相结合建立储层油水识别模型并结合常规测井资料对储层油水进行识别.实验表明,基于WT与LSSVM的储层油水识别模型具有较快的识别速度和较高的识别精度.因此,将WT与LSSVM相结合应用于储层油水识别建模是行之有效的.  相似文献   

19.
 由于混沌时间序列具有样本大等特点,使用最小二乘支持向量机(LSSVM)建立其预测模型具有内存开销大、训练速度慢等缺点,因此,在混沌序列数据特性的基础上,利用样本集分割与样本相关性的思想,提出一种基于缩减策略的混沌时间序列LSSVM预测模型。该模型利用混沌时间序列的平均周期将大样本数据分解成不同的子集,把最后一个子集之外的其他子集利用拉格朗日乘子的值缩减一部分非支持向量,将缩减后样本与最后一个子集合并,利用相关系数缩减法缩减合并后的样本集,并利用最小二乘支持向量机进行回归预测。最后通过相关实验,验证了本模型在基本不损失预测精度的基础上具有较快的计算速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号