首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here significant primary sequence homology among the predicted translational products of three genes: CDC4 , CDC36 and ets. CDC4 and CDC36 are Saccharomyces cerevisiae cell division cycle genes, while ets is a transformation-specific sequence of avian erythroblastosis virus E26. The deduced primary structures of the three gene products were compared by computer to a large data base of known and predicted protein sequences. The search revealed 22.0-25.5% identity over regions of 140-206 codons, respectively between the different pairwise combinations. For these particular sequences, these identity scores fall 3.4-4.0 standard deviations above the empirically-determined mean values of fortuitous similarity. S. cerevisiae calls require CDC36 and CDC4 in order to complete two early events in the cell cycle: execution of start ( CDC36 ) and spindle pole body separation ( CDC4 ). In virus E26, the ets sequence is linked in frame with delta gag and mybE in the tripartite structure 5'-delta gag- mybE -ets-3', comprising the E26 transforming oncogene. The homologies described here suggest that the biochemical functions or regulation of the CDC4 , CDC36 and ets products may be related.  相似文献   

2.
P K Sorger  A W Murray 《Nature》1992,355(6358):365-368
In somatic cells, entry into mitosis depends on the completion of DNA synthesis. This dependency is established by S-phase feedback controls that arrest cell division when damaged or unreplicated DNA is present. In the fission yeast Schizosaccharomyces pombe, mutations that interfere with the phosphorylation of tyrosine 15 (Y15) of p34cdc2, the protein kinase subunit of maturation promoting factor, accelerate the entry into mitosis and abolish the ability of unreplicated DNA to arrest cells in G2. Because the tyrosine phosphorylation of p34cdc2 is conserved in S. pombe, Xenopus, chicken and human cells, the regulation of p34cdc2-Y15 phosphorylation could be a universal mechanism mediating the S-phase feedback control and regulating the initiation of mitosis. We have investigated these phenomena in the budding yeast Saccharomyces cerevisiae. We report here that the CDC28 gene product (the S. cerevisiae homologue of cdc2) is phosphorylated on the equivalent tyrosine (Y19) during S phase but that mutations that prevent tyrosine phosphorylation do not lead to premature mitosis and do not abolish feedback controls. We have therefore demonstrated a mechanism that does not involve tyrosine phosphorylation of p34 by which cells arrest their division in response to the presence of unreplicated or damaged DNA. We speculate that this mechanism may not involve the inactivation of p34 catalytic activity.  相似文献   

3.
A Amon  U Surana  I Muroff  K Nasmyth 《Nature》1992,355(6358):368-371
Progression from G2 to M phase in eukaryotes requires activation of a protein kinase composed of p34cdc2/CDC28 associated with G1-specific cyclins. In some organisms the activation of the kinase at the G2/M boundary is due to dephosphorylation of a highly conserved tyrosine residue at position 15 (Y15) of the cdc2 protein. Here we report that in the budding yeast Saccharomyces cerevisiae, p34CDC28 also undergoes cell-cycle regulated dephosphorylation on an equivalent tyrosine residue (Y19). However, in contrast to previous observations in S. pombe, Xenopus and mammalian cells, dephosphorylation of Y19 is not required for the activation of the CDC28/cyclin kinase. Furthermore, mutation of this tyrosine residue does not affect dependence of mitosis on DNA synthesis nor does it abolish G2 arrest induced by DNA damage. Our data imply that regulated phosphorylation of this tyrosine residue is not the 'universal' means by which the onset of mitosis is determined. We propose that there are other unidentified controls that regulate entry into mitosis.  相似文献   

4.
5.
Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth   总被引:36,自引:0,他引:36  
Zhu G  Spellman PT  Volpe T  Brown PO  Botstein D  Davis TN  Futcher B 《Nature》2000,406(6791):90-94
  相似文献   

6.
Kurian L  Palanimurugan R  Gödderz D  Dohmen RJ 《Nature》2011,477(7365):490-494
Polyamines are essential organic polycations with multiple cellular functions relevant for cell division, cancer and ageing. Regulation of polyamine synthesis is mainly achieved by controlling the activity of ornithine decarboxylase (ODC) through an unusual mechanism involving ODC antizyme, the binding of which disrupts homodimeric ODC and targets it for ubiquitin-independent degradation by the 26S proteasome. Whereas mammals express several antizyme genes, we have identified a single orthologue, termed OAZ1, in Saccharomyces cerevisiae. Similar to its mammalian counterparts, OAZ1 synthesis is induced with rising intracellular polyamine concentrations, which also inhibit ubiquitin-dependent degradation of the OAZ1 protein. Together, these mechanisms contribute to a homeostatic feedback regulation of polyamines. Antizyme synthesis involves a conserved +1 ribosomal frameshifting (RFS) event at an internal STOP codon during decoding of its messenger RNA. Here we used S. cerevisiae OAZ1 to dissect the enigmatic mechanism underlying polyamine regulation of RFS. In contrast with previous assumptions, we report here that the nascent antizyme polypeptide is the relevant polyamine sensor that operates in cis to negatively regulate upstream RFS on the polysomes, where its own mRNA is being translated. At low polyamine levels, the emerging antizyme polypeptide inhibits completion of its synthesis causing a ribosome pile-up on antizyme mRNA, whereas polyamine binding to nascent antizyme promotes completion of its synthesis. Thus, our study reveals a novel autoregulatory mechanism, in which binding of a small metabolite to a nascent sensor protein stimulates the latter's synthesis co-translationally.  相似文献   

7.
Positive feedback in the activation of G1 cyclins in yeast.   总被引:35,自引:0,他引:35  
L Dirick  K Nasmyth 《Nature》1991,351(6329):754-757
  相似文献   

8.
M J Hart  A Eva  T Evans  S A Aaronson  R A Cerione 《Nature》1991,354(6351):311-314
THE superfamily of low molecular mass GTP-binding proteins, for which the ras proteins are prototypes, has been implicated in the regulation of diverse biological activities including protein trafficking, secretion, and cell growth and differentiation. One member of this family, CDC42Hs (originally referred to as Gp or G25K), seems to be the human homologue of the Saccharomyces cerevisiae cell-division-cycle protein, CDC42Sc. A second S. cerevisiae protein, CDC24, which is known from complementation studies to act with CDC42Sc to regulate the development of normal cell shape and the selection of nonrandom budding sites in yeast, contains a region with sequence similarity to the dbl oncogene product. Here we show that dbl specifically catalyses the dissociation of GDP from CDC42Hs and thereby qualifies as a highly selective guanine nucleotide exchange factor for the GTP-binding protein. Although guanine nucleotide exchange activities have been previously described for other members of the Ras-related GTP-binding protein family, this is the first demonstration, to our knowledge, of the involvement of a human oncogenic protein in catalysing exchange activity.  相似文献   

9.
10.
11.
12.
13.
The complete DNA sequence of yeast chromosome III.   总被引:98,自引:0,他引:98  
The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function.  相似文献   

14.
15.
16.
17.
对既存在时间关系约束又存在时间宽度约束的n个事件,用时间规划的D_时刻表算法,可以求得2n个端点集的一个有序划分,该划分满足所有的约束条件.我们在应用中对算法进行了一些改进,增加了矩阵化简过程中的合并链和空事件,提高了算法的实用性.  相似文献   

18.
以国际田联竞赛规则中对抢跑规则的最新改动以“零抢跑”为主线,结合竞赛规则与竞技赛场战术的相互推动发展,多维度对指导规则变化的因素进行分析,通过对新规则变动的若干深层次的思考,以使对田径“零抢跑”竞赛规则有一个理性的认识和把握,旨在为我国田径运动的良性发展提供理论参考。  相似文献   

19.
Gene conversion between duplicated genetic elements in yeast   总被引:96,自引:0,他引:96  
J A Jackson  G R Fink 《Nature》1981,292(5821):306-311
The mitotic recombination behaviour of a duplication of the his4 region on chromosome III in the yeast Saccharomyces cerevisiae was studied. The major recombination event between the duplicated segments is gene conversion unassociated with reciprocal recombination. The rad52-1 mutation preferentially decreases mitotic gene conversion. These results suggest that mitotic gene conversion may occur by a different pathway from that occurring in meiosis. This mitotic gene conversion may be important in yeast mating type interconversion and the maintenance of sequence homogeneity in families of repeated eukaryotic genes.  相似文献   

20.
Novel protein-coding genes can arise either through re-organization of pre-existing genes or de novo. Processes involving re-organization of pre-existing genes, notably after gene duplication, have been extensively described. In contrast, de novo gene birth remains poorly understood, mainly because translation of sequences devoid of genes, or 'non-genic' sequences, is expected to produce insignificant polypeptides rather than proteins with specific biological functions. Here we formalize an evolutionary model according to which functional genes evolve de novo through transitory proto-genes generated by widespread translational activity in non-genic sequences. Testing this model at the genome scale in Saccharomyces cerevisiae, we detect translation of hundreds of short species-specific open reading frames (ORFs) located in non-genic sequences. These translation events seem to provide adaptive potential, as suggested by their differential regulation upon stress and by signatures of retention by natural selection. In line with our model, we establish that S. cerevisiae ORFs can be placed within an evolutionary continuum ranging from non-genic sequences to genes. We identify ~1,900 candidate proto-genes among S. cerevisiae ORFs and find that de novo gene birth from such a reservoir may be more prevalent than sporadic gene duplication. Our work illustrates that evolution exploits seemingly dispensable sequences to generate adaptive functional innovation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号