首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 312 毫秒
1.
本文利用SAMPEX和GOES-10卫星的观测数据研究了2002年9月28日至10月8日强磁暴期间外辐射带高能电子通量的演化.两颗卫星的观测结果均显示,在磁暴恢复相期间,高能电子通量呈现出显著的增强,于10月6日达到最大值.SAMPEX卫星在L=3.5处观测到1.5~14MeV和2.5~14MeV两个能量通道的电子通量的最大值为6×10^2cm^-2s^-1sr^-1keV^-1和5×10^3cm^-2s^-1sr^-1keV^-1,分别比磁暴前上升了约10和8倍。而GOES-10卫星于同步轨道附近观测到的〉0.6MeV和〉2Mev的电子通量峰值为磁暴前的50倍和30倍.本文进一步利用ClusterC3卫星研究了磁暴期间背景等离子体参数和哨声模合声(chorus)波的活动现象.ClusterC3卫星于10月1日与10月4日两次穿过外辐射带区域,观测到高强度(10^-5-10^4nT^2Hz^-1)的合声波.数值计算表明观测到的合声波能够与外辐射带高能电子产生回旋共振作用.本文多卫星联合观测和数值模拟的结果为合声波驱动的外辐射带高能电子的回旋共振加速机制提供了新的证据.  相似文献   

2.
采用传播角高斯分布,考虑了n为0到±5阶的共振贡献,分析了传播角O(X=tanO)对L=4.5处向阳侧和背阳侧合声波驱动两种典型能量0.1和1.0MeV电子扩散系数的影响.在投掷角αe〈10°,对于0.1和1.0MeV电子在向阳侧与背阳侧,5阶(-2,-1,0,1,2阶)扩散系数均随峰值增大而减小,这样导致总扩散系数随峰值增大而减小.当投掷角αe〈10°时,对于向阳侧1.0MeV以及向阳侧和背阳侧0.1MeV电子,正阶扩散系数均小于同阶负阶扩散系数,-2,1,2阶扩散系数很小,而占主导地位的-1阶扩散系数随峰值增大而不变,导致总扩散系数基本保持不变.但对于背阳侧1.0MeV电子,-2,1,2阶扩散系数贡献大于-1阶贡献,且随峰值增大而增大,导致总扩散系数随峰值增大而增大.结果表明波的传播角对合声波与外辐射带电子回旋共振的定量分析起着重要作用.  相似文献   

3.
高能电子探测是空间环境探测的重要组成部分. 由于高能电子穿透本领很强, 常常采用厚探测器组成的粒子望远镜作为传感部件. 由于不同能量电子将穿透不同深度, 所以几何因子随入射电子能量变化. 结合AE8模型, 以中巴资源一号卫星01和02星的粒子监测器为例, 讨论电子探头的几何因子问题. 根据计算, 低能档(0.5~1.0 MeV)与高能档(≥2.0 MeV)几何因子不同, 分别为2.468和1.736 cm2·sr. 这与传统估算的几何因子为1.18 cm2·sr有较大出入. 伴随几何因子计算, 讨论了探头的方向响应函数, 可用来协助探头设计及方向测量分析.  相似文献   

4.
由于CME与CIR的太阳风/行星际磁场结构有所差别,所以在这两种太阳风/行星际结构触发的地球磁暴期间,太阳风等离子体与能量通过磁重联向地球内磁层的注入过程也不相同.因此对于CME引发的磁暴与CIR引发的磁暴,辐射带高能电子通量的变化有显著差异.通过SAMPAX卫星观测的数据,本文分别对54个CME触发的磁暴与26个CIR触发的重现性磁暴期间1.5~6.0MeV电子外辐射带的动态变化进行了研究.结果表明,在主相期间,对于CME磁暴,电子通量在6≤L≤7的区域出现了显著增强.在Dst指数(中值)达到最小值(-201nT)时,外边界的位置移动到L=4附近.对于CIR磁暴,主相期间,没有在6≤L≤7区域观察到通量的显著增强.而当Dst指数(中值)达最小值(-58nT)时,外边界的位置移动到L=5.5附近.在磁暴恢复相期间,对于CME磁暴,外辐射带的位置整体低于磁暴前,在6≤L≤7的区域也出现了电子通量的增强;对于CIR磁暴,外辐射带外边界的位置相比磁暴前有不明显的增高,并且在上述区域没有观察到通量的明显增强.我们发现在绝大多数情况下,1.5~6.0MeV电子的外辐射带电子通量对数衰减1/e截止廓线可以表示出外辐射带外边界的位置.在CME磁暴主相期间,对数衰减1/e截止纬度与Kp指数具有相关性(相关系数为-0.56).对于CIR磁暴,对数衰减1/e截止纬度与Kp指数也有较好的相关性(相关系数为-0.58).此外,CME磁暴主相期间,1.5~6.0MeV电子通量最大值的位置(L值)受到磁暴期间Dst指数最小值的控制;整体而言,对于上述两种磁暴,电子通量最大值的位置都随磁暴的增强而降低.多重磁暴是造成外辐射带相对论电子通量变化异常的重要原因之一.  相似文献   

5.
本文根据磁层粒子动力学的基本原理,假定中内磁层的带电粒子为绝热运动,并通过波-粒相互作用,投掷角为各向同性分布,在随时间变化的电磁场中跟踪粒子弹跳平均的对流运动,包括电场漂移、磁场梯度和曲率漂移,同时考虑电子沉降造成的损失,建立了中内磁层低能电子通量分布模式.利用该模式,本文模拟了磁暴期间中内磁层低能电子通量的变化过程,并与卫星观测数据进行了比较.结果表明,模式计算结果与卫星观测数据的变化趋势吻合,对数通量相对于卫星观测结果的均方根(rsm)误差在0.5~1.0.  相似文献   

6.
能量粒子的投掷角分布测量对于磁暴、粒子加速机制等空间物理理论研究和空间天气的准确现报和预报具有非常重要的意义.利用小孔成像技术和位置灵敏探测器构建的小孔成像探测器可用于测量能量粒子的投掷角分布.小孔成像探测器的角度响应标定一般需要特殊的设备,如专门设计的粒子加速器.这种粒子加速器必须具备如下特点:出射粒子能量在中能范围;粒子在测量时间内均匀出射;粒子出射方向一致;单位面积束斑内粒子数量足够低.介绍利用带准直器的90Sr/90Y电子放射源测量小孔成像探测器角度响应的方法,并利用Geant4软件进行了仿真计算.试验结果表明电子放射源标定实验结果与Geant4仿真计算结果符合度良好,验证了上述方法的有效性.  相似文献   

7.
从Boltzmann方程出发,根据带电粒子在中性大气中的传输理论,综合考虑弹性散射、激发、离化以及二次电子生成等重要物理过程,用数值方法求解沉降电子传输方程,获得随高度、能量和投掷角变化的微分沉降电子数通量.在单成分(N2)大气近似条件下,模式计算结果较好地描述了沉降电子通量谱在极区高层大气中的传输规律和特性;由沉降电子微分通量计算得到的中性成分电离率主要特征与已有经验模式较好地吻合.将FAST卫星飞越EISCAT雷达上空时观测到的沉降电子能谱作为模式输入,计算获得了与由雷达观测数据反演得到的中性大气电离率相一致的结果.  相似文献   

8.
在高压直流输变电设备绝缘系统中,空间电荷效应是影响设备绝缘劣化的主要因素之一.研究材料陷阱分布对空间电荷形成与积累特性的影响,对于诊断设备绝缘老化较为重要.建立了单极性电荷输运模型,研究了电荷注入、电荷输运和电荷入陷脱陷的物理过程.通过求解电荷连续性方程、泊松方程和电荷入陷与脱陷的一阶动力学方程,可以得出陷阱密度对低密度聚乙烯介质内空间电荷分布特性的影响.计算得到了不同陷阱密度(6.25×1019~6.25×1021m3)介质的内部空间电荷随时间和陷阱密度的变化关系.随着加压时间的延长,自由电子总数先增加后减小,被捕获电子的总数则逐渐增大.在一定陷阱密度范围内(小于~3.125×1021m3),最大自由电子总数随着陷阱密度的增大逐渐减小,最大被捕获电子总数则逐渐增加.当陷阱密度大于3.125×1021m3时,介质内部电荷数量随陷阱密度变化不大.该模型和相关结论可以更好地理解高压直流输变电设备的绝缘老化现象和机理.  相似文献   

9.
为了全面了解立方烷的性质,本文利用CASTEP程序包基于密度泛函理论的交换关联函数(GGA)方法对立方烷的电子结构和光学性质进行研究。在计算的过程中首先优化立方烷的晶体结构并与实验值进行对比,结果符合很好。立方烷的能带带隙为5.453CV,吸收系数最大峰值为2.509×10^5cm^-1.然后又研究光学性质的吸收谱,反射谱和能量损失函数。  相似文献   

10.
针对目前电子封装的封装密度越来越高、封装厚度越来越薄、封装体在基板上所占面积越来越大,发热引起的失效越来越严重等问题,以晶体管瞬态热应力分析为例,建立热力耦合力学模型.利用ansys研究电子封装热失效问题,得到温度场、应力场和变彤场的分布规律.温度和应力的主要规律包括两点,一是温度和应力都在角点处变化明显,应力比较集中.温度从上到下逐层变化,逐渐减小,并且层与层之间温度变化不大,模型中间部分温度层厚度几乎相同,下半部分同一温度层有规律的变化.二是当温度较高时,在受约束面上和角点处应力值较大,并且在模型的角点和中部出现应力集中现象.  相似文献   

11.
现代信息技术的基石是集成电路芯片,而构成集成电路芯片的器件中约90%是源于硅基CMOS(complementary metal-oxide-semiconductor,互补金属-氧化物-半导体)技术.经过半个世纪奇迹般的发展,硅基CMOS技术即将进入14 nm技术节点,并将在2020年之前达到其性能极限,后摩尔时代的纳电子科学与技术的研究变得日趋急迫.目前包括IBM在内的很多企业认为,微电子工业走到8 nm技术节点时可能不得不面临放弃继续使用硅作为支撑材料,之后非硅基纳电子技术的发展将可能从根本上影响到未来芯片和相关产业的发展.在为数不多的几种可能的替代材料中,碳基纳米材料——特别是碳纳米管和石墨烯,被公认为是最有希望替代硅的材料.北京大学碳电子研究团队最新研究结果表明,在14 nm技术节点碳纳米管晶体管的速度和功耗均较硅基器件有10倍以上的优势,进入亚10 nm技术节点后这种优势还将继续加大.2013年9月,美国斯坦福大学研究组在《自然》杂志以封面文章的形式报道制造出了世界上首台碳纳米管计算机.2014年7月1日《MIT技术评论》报道IBM宣布由碳纳米管构成的比现有芯片快5倍的芯片将于2020年之前成型.基于碳纳米管的集成电路技术不再是遥不可及的梦想,现代信息科技与产业的支撑材料正加速从硅到碳进行转变.相较欧美发达国家在2020年之后的非硅基纳米电子学研究领域的巨额投入,我国对非硅基技术尚无布局.为抢占下一代半导体技术战略制高点,建议尽快启动国家碳电子计划,用一个协调的方式来支持包括材料生长、器件制备、模拟和系统设计方面的研究,汇聚优势资源,系统推进碳基信息技术的成型和发展,奠定中国未来的纳电子产业基础.  相似文献   

12.
用大束流密度的钴金属离子注入硅能够直接合成性能良好的薄层硅化物. 束流密度为0.25~1.25 A/m2, 注入量为5 × 1017 cm-2. 用透射电子显微镜(TEM)和电子衍射(XRD)分析了注入层结构. 结果表明随束流密度的增加, 硅化钴相生长, 薄层硅化物的方块电阻RS明显下降. 当束流密度为0.75 A/m2时, RS明显地下降, 说明连续的硅化物已经形成. 当束流密度为1.25 A/m2时, 该值达到最小值3.1 W. XRD分析表明, 注入层中形成了3种硅化钴Co2Si, CoSi和CoSi2. 经过退火后, RS进一步地下降, RS最小可降至2.3 W, 说明硅化钴薄层质量得到了进一步的改善. 大束流密度注入和退火后, 硅化钴相进一步生长, Co2Si相消失. TEM对注入样品横截面观察表明, 连续硅化物层厚度为90~133 nm. 最优的钴注入量和束流密度分别为5 × 1017 cm-2和0.50 mA/cm2. 最佳退火温度和退火时间分别为900℃和10 s. 高温退火(1200℃)仍然具有很低的薄层电阻, 这充分说明硅化钴具有很好的热稳定性. 用离子注入Co所形成的硅化钴制备了微波功率器件Ohm接触电极, 当工作频率为590~610 MHz, 输出功率为18~20 W时, 同常规工艺相比, 发射极接触电阻下降到0.13~0.2倍, 结果器件的噪声明显地下降, 器件质量有了明显的提高.  相似文献   

13.
AlGaN/GaN结构中Al组分对2DEG迁移率有显著的影响,但对这种现象的机理分析非常欠缺,尚不清楚.结合最近研究的实验数据,采用多种散射机制联合作用的解析模型对变Al组分AlGaN/GaN结构中的二维电子气迁移率做了理论计算和分析,所考虑的散射机制包括声学形变势散射、声学波压电散射、极性光学声子散射、合金无序散射、界面粗糙散射、位错散射、调制掺杂远程散射等.发现势垒层Al组分增加引起的2DEG密度增大是造成各种散射作用发生变化的主要因素.77K下2DEG迁移率随Al组分的变化主要是由界面粗糙散射和合金无序散射决定,室温下这种变化则主要由极性光学声子散射和界面粗糙散射决定.计算的界面粗糙度参数与势垒层Al组分的函数关系说明,Al组分增大所造成的应力引起AlGaN/GaN界面粗糙度增大,是界面粗糙散射限制高Al异质结2DEG迁移率的一个重要因素.  相似文献   

14.
单晶铜线材在冷拉拔变形过程中的组织演化   总被引:1,自引:0,他引:1  
陈建  严文  王雪艳  范新会 《中国科学(E辑)》2007,37(11):1444-1454
采用光学金相、电子背散射衍射和透射电子显微镜对单晶铜线材拉拔变形的组织演化进行了分析. 发现单晶铜线材除了有少量的晶界之外, 还有枝晶和少量生长孪晶, 但凝固过程中所产生的枝晶在变形组织中却很难观察到. 在室温下拉拔变形过程中, 单晶铜线材的组织演化可分为 3 个阶段, 当真应变小于0.94时, 宏观尺度上晶粒没有发生明显的分裂, 从微观尺度上讲, 组织的演化为位错胞形成以及沿拉丝方向拉长的变形阶段; 真应变为0.94~1.96时, 宏观上出现晶粒分裂, 微观上胞块和沿{111}的MBs开始增多; 真应变大于1.96时, 宏观上晶粒分裂加剧, 形成纤维状组织, 微观上出现剪切变形的S带. 随变形量的增加, 由晶粒竞争生长形成的á100ñ丝织构转变为á100ñ, á111ñ以及比较弱的á112ñ丝织构, 剪切变形是织构组分转变的原因. 变形形成的界面, 其角度随变形量增加而增大. 真应变为0.94时, 界面属于小角度界面; 真应变为1.96时, 界面角度超过50°, 并在25°~30°高角度范围出现了由织构演化所形成的第2个峰.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号