首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文利用公式ΔH=-0.1196n λ计算了H2在N2O内燃烧反应的火焰温度,计算值为3197K,与实际温度2923K较为接近.根据火焰温度,提出了H2在N2O内燃烧反应的机理,该机理为:(1)2N2O→N2 2NO;(2)NO hv→N· O;(3)N· NO→N2 O·;(4)H2 O·→H2O hv.  相似文献   

2.
利用公式△H=-0.1196n/λ计算了S、H2S及CS2在氧气中燃烧反应的火焰温度,并推测了三种物质燃烧反应的机理.S在氧气中燃烧反应的火焰温度计算值为2086 K,与测定值2093K接近,误差为-0.30%.H2S在氧气中燃烧反应的火焰温度计算值为2238K,测定温度2383K,误差为-6.1%.CS2在氧气中燃烧反应的火焰温度计算值为2502K,测定温度2468K,误差为0.14%.根据燃烧反应的火焰温度,推测S、H2S及CS2在氧气中燃烧反应机理.S燃烧反应机理为:(1)O2+ hv→2O·,(2)S +O·→SO+hv,(3)2SO+O2→2SO2,(4)SO2+O·→SO3 +hv.H2S燃烧反应机理为:(1)O2+ hv→2O·,(2) H2S→H2 +S,(3)H2 +O·→H2O+hv,(4)S+O·→SO+hv,(5) 2SO+ O2→2SO2,(6)SO2 +O·→SO3+ hv.CS2燃烧反应机理为:(1)O2+hv→2O·,(2) CS2→C +2S,(3)C+O·→CO+ hv,(4)CO+O·→CO+hv,(5)S+O·→SO+ hv,(6)2SO+ O2→2SO2,(7)SO2+O·→SO3+ hv.  相似文献   

3.
利用公式△H=-0.119 6n/λ计算了H_2在F_2内燃烧反应的理论火焰温度.当反应物温度为400 K时,其理论火焰温度为4 354 K,与实际温度3 962 K较为接近,根据火焰温度,提出了H_2在F_2内燃烧反应的机理,该机理为:(1)F_2+hv→2F·,(2)H_2+2F·→2HF+2hv,  相似文献   

4.
在量子化学对SiH与HCl反应计算的基础上 ,运用统计热力学和Wigner校正的Eyring过渡态理论计算了该反应在 73 .1 5~ 1 873 .1 5K温度范围内的热力学函数、平衡常数、频率因子A和速率常数随温度的变化 .计算结果表明该反应在低温下具有热力学优势 ,而在高温下具有动力学优势 .该反应在研究的温度范围内是一放热、熵减少的反应 ,反应的速率常数随温度的升高而增大 ,而且服从Arrhenius定律 .  相似文献   

5.
基于电子与核振动近似方法,应用密度泛函B3P86方法和相对论有效核势SDD计算,结合统计热力学方法, 研究了100 K~1000 K温度范围内Pd与H2、O2反应的标准生成热力学函数以及反应平衡压力与温度的关系. 结果表明:Pd与H2、O2反应是放热反应,Pd原子吸附H2的放热量大于吸附O2的放热量,温度升高不利于吸附反应进行;Pd对O2的自发吸附温度很低,室温下几乎不能进行,而对H2的自发吸附温度可高达500 K以上;在100 K~284.394 K可自发吸附O2和H2的温度范围内,O2的反应平衡压力比  相似文献   

6.
基于电子与核振动近似方法,应用密度泛函B3P86方法和相对论有效核势SDD计算,结合统计热力学方法, 研究了100K~1000K温度范围内Pd与H2、O2反应的标准生成热力学函数以及反应平衡压力与温度的关系. 结果表明:Pd与H2、O2反应是放热反应,Pd原子吸附H2的放热量大于吸附O2的放热量,温度升高不利于吸附反应进行;Pd对O2的自发吸附温度很低,室温下几乎不能进行,而对H2的自发吸附温度可高达500K以上;在100K~284.394K可自发吸附O2和H2的温度范围内,O2的反应平衡压力比H2的平衡压力高出9~18个数量级. 因此,O2作为杂质气体对目标反应Pd-H2的影响非常有限.  相似文献   

7.
用QCISD(T)/6-311 G(d,p)//MP2(full)/6-311G(d,p)方法研究了CH3自由基与CH3NH2的抽氢反应过程.结果表明,该反应包含两个反应通道,即CH3分别从CH3基团(R1)和NH2(R2)基团上抽氢.R1势垒比R2势垒仅低3.42 kJ/mol,表明两反应通道将相互竞争.在从头算的基础上,用变分过渡态理论(CVT)加小曲率隧道效应(SCT)研究了各反应在温度范围为200~2 000 K内的速率常数,所得结果与实验值符合的较好.动力学计算表明,在所研究的温度范围内,变分效应对速率常数的计算影响不大,而在低温范围内,隧道效应起了很重要的作用.  相似文献   

8.
应用量子化学耦合簇理论CCSD和MP2方法对文[1]提出的Titan大气中可能生成NH3的链式反应中第二个反应:N++H2→NH++H进行了热力学计算以及反应机理的分析研究.发现:(a)反应在Titan环境中不具有反应自发性,其转变温度为1797.6K,高于这个温度反应才有可能自发正向进行;(b)此反应的过渡态为线形,正反应活化能为118.833kJ.mol-1,在不同温度下,尤其是低温下反应的平衡常数很小;(c)由于此反应存在高的反应势垒,可以认为这6个链式反应不是在Titan大气的低温环境中自然合成N  相似文献   

9.
正庚烷-甲烷二元燃料着火特性的模拟研究   总被引:1,自引:0,他引:1  
针对试验中发现的柴油引燃天然气会推迟着火的现象,采用零维模型定量分析了由于加入甲烷所引起的混合气氧分压、定容热容以及化学动力学反应的变化对正庚烷着火的推迟作用,表明了动力学反应的变化对着火推迟有着重要的影响.其次,通过对二元燃料详细机理的耦合分析,对二元燃料动力学反应在着火推迟中的作用机理做出了解释.发现在低温氧化过程中,由于甲烷将活跃的OH转化为稳定的H2O2,同时甲烷不具备与正庚烷类似的低温链分支反应,故降低了系统的反应活性.随着初始温度增加至超过1,000,K,H2O2开始迅速分解,控制着火的重要反应也随之由正庚烷二次加氧后的链分支反应,逐渐向着反应H2O2=OH+OH、CH3+HO2=CH3O+OH、H+O2=OH+O转变,动力学反应对正庚烷着火的影响也由抑制转变为促进.最后,创建了一个包含53步反应、36种组分的简化机理.计算结果表明,该机理在不同初始温度、初始压力、当量比的情况下,可以对二元燃料着火时刻有较好的预测.  相似文献   

10.
在量化计算的基础上,运用统计热力学和Wigner校正的Eyring过渡态理论研究了98.15~2 298.15K温度范围内单态卡宾(CH2)与臭氧(O3)反应的热力学和动力学性质,给出了有关的计算数据,表明单态卡宾与臭氧反应在低温下具有热力学优势,高温下具有动力学优势.对于单态卡宾与臭氧的两条反应通道,通道2不仅具有很强的自发性,而且在动力学上更易进行.  相似文献   

11.
用Penning离子阱经碰撞反应H ,H 2/H,H2产生稳定的H n(n=3,4,5,6).高分辨离子谱中除了H ,H 2,H 3和H 5之外,还探测到H 4,H 6.根据Wright和Borkman预言n=4,6的偶数氢团簇离子与对应的n=5,7的奇数离子具有可比较的结合能,由该实验结果可以推断,n=4,6与n=5,7的离子在反应动力学方面具有相近的性质,都能够经碰撞合成反应获得.还分析了H 4,H 6的生成机制.  相似文献   

12.
采用双水平直接动力学方法研究了反应CH3CHF2+F→产物的反应机理和动力学性质.该反应存在3个反应通道,即1个α-氢迁移和2个β-氢迁移反应通道.在MP2/6-311G(d,p)水平下优化了所有稳定点的几何构型,在G3(MP2)//MP2水平下,对反应路径上的一系列点进行了单点能量校正.根据变分过渡态理论计算了该反应在200~2 000 K温度区间的速率常数,并与实验值进行了对比.计算结果表明β-氢提取通道在整个温度区间是主要的反应通道.  相似文献   

13.
正庚烷部分预混对冲火焰中苯环的生成机理   总被引:1,自引:0,他引:1  
采用详细反应机理对正庚烷部分预混对冲层流火焰中苯环与乙炔的生成进行了模拟,反应机理包括108种组分的572个基元反应.通过数值计算分析了部分预混对冲火焰的结构和主要反应物、反应生成物(O2、 n-C7H16、 CO2、 CO、 H2、 H2O)、中间产物(CH4、 C2H4、 C2H2、 C3Hx)以及苯的浓度分布,计算结果与实验结果吻合良好,说明该机理可以用于正庚烷层流对冲火焰中产物的预报.采用灵敏度分析与反应流分析方法对结果进行了分析,得出了正庚烷层流火焰中从正庚烷到苯环在低温(≤1 300 K)和高温条件下的主要反应链.  相似文献   

14.
针对HITRAN数据库缺乏CO_2在低温条件下的吸收谱线研究数据的问题,对波长位于1 572.34 nm处的低温下CO_2吸收谱线进行了研究,得到250~500 K范围内CO_2吸收系数的温度依赖经验公式.将该经验公式与文献中的实验数据进行计算对比,得到了气体质量分数平均误差为3.305%的对比结果.  相似文献   

15.
甲烷燃烧反应的火焰温度   总被引:3,自引:0,他引:3  
根据公式ΔH=W′=-0.1196n/λ计算了甲烷燃烧反应的火焰温度,计算温度为3134K,与实际温度3120K非常接近.这进一步明确了烃燃烧反应机理,该机理为:(1)O2+hν2O·;(2)CpH2qpC+qH2;(3)H2+O·H2O+hν;(4)C+O·CO+hν;(5)2CO+O22CO2.  相似文献   

16.
在H HBr体系的最新从头计算势能面上展开全三维含时量子波包法计算.通过计算发现该反应几率曲线几乎从碰撞能量为零时就开始急剧上升,并在0.08eV左右达到峰值,之后随着碰撞能量的增加,该曲线整体呈波形下降.同时还计算得到速率常数,通过比较发现其值与实验结果吻合得比较好,尤其是在低温部分.该文的计算与分析从微观角度揭示了该反应的反应机理.  相似文献   

17.
利用公式△H=-0.1196n/A计算了乙醚和丙酮分别在氧气和空气中燃烧反应的温度,并推测了乙醚和丙酮燃烧反应的机理.乙醚在氧气中燃烧反应的火焰温度理论值为3272K,与测定温度3134K接近,误差为4.40%.丙酮在空气中燃烧反应的火焰温度理论值为1292K,与测定温度173K接近,误差为1.49%.根据乙醚和丙酮燃烧反应的火焰温度,推测乙醚和丙酮燃烧反应机理为:(1)O2+hv→2O·;(2)(C2H5)2O→4C+4H2+H2O(乙醚),CH3COCH3→3C+2H2+H2O(丙酮);(3)H2+O·→H2O+hv;(4)C+O·→CO+hv;(5)2CO+O2→2CO2.  相似文献   

18.
在量化计算的基础上,运用统计热力学和Wigner校正的Eyring过渡态理论研究了(98.15~2098.15)K温度范围内活性F原子和臭氧O_3反应的热力学和动力学性质,给出了整个反应的热力学数据和各步反应的动力学数据。结果表明该反应在低温下具有热力学优势,高温下具有动力学优势,其中F O_3→TS(1)→M为反应的定速步骤。  相似文献   

19.
采用基于ReaxFF反应力场的分子动力学方法研究了1,3-二甲基金刚烷(1,3-DMA)在不同温度和质量浓度下的热解和燃烧反应.结果表明,1,3-DMA热解反应开环方式有5种,产物主要为H2,CH4,C2H2,C2H4,C3H4,C3H6,C4H6,观察到H2的生成方式有两种.1,3-DMA燃烧反应主要产物是H2O和CHO类小分子,观察到H2O的生成方式有2种.同时研究了影响热解和燃烧反应速率的因素,温度越高、反应物质量浓度越大热解和燃烧反应速率越大.用ReaxFF动力学方法模拟所得到的结果与实际实验结果一致.  相似文献   

20.
正己烷在Ni/HM催化剂上的异构化反应动力学模型   总被引:1,自引:0,他引:1  
利用高压微反色谱装置,在温度483.15~523.15 K、压力1.0~3.0 MPa、氢油比10~40、重时空速0.5~2.5 h-1的条件下,对正己烷在Ni/HM催化剂上的临氢异构化动力学进行了实验研究,并考察了总压、空速、温度、氢油比等因素对正己烷异构化反应速率的影响.结果表明,正己烷临氢异构化反应为拟一级反应,其表观活化能为(100±1.5) kJ/mol.用Langmuir-Hinshelwood方法建立了正己烷异构化双位反应动力学模型,该模型的计算值与实验结果吻合较好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号